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Abstract

In this thesis, I report on experiments that microscopically probe quantum phase
transitions of ultracold atoms in optical lattices. We have developed a “quantum
gas microscope” that allowed, for the first time, optical imaging and manipulation
of single atoms in a quantum-degenerate gas on individual sites of an optical lattice.
This system acts as a quantum simulator of strongly correlated materials, which are
currently the subject of intense research because of the technological potential of
high—T, superconductors and spintronic materials. We have used our microscope to
study the superfluid to Mott insulator transition in bosons and a magnetic quantum
phase transition in a spin system.

In our microscopic study of the superfluid-insulator transition, we have character-
ized the on-site number statistics in a space- and time-resolved manner. We observed
Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kp
per particle. We also measured local quantum dynamics and directly imaged the shell
structure of the Mott insulator.

I report on the first quantum magnetism experiments in optical lattices. We
have realized a quantum Ising chain in a magnetic field, and observed a quantum

phase transition between a paramagnet and antiferromagnet. We achieved strong
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Abstract v

spin interactions by encoding spins in excitations of a Mott insulator in a tilted
lattice. We detected the transition by measuring the total magnetization of the
system across the transition using in-situ measurements as well as the Néel ordering
in the antiferromagnetic state using noise-correlation techniques. We characterized
the dynamics of domain formation in the system. The spin mapping introduced opens
up a new path to realizing more exotic states in optical lattices including spin liquids
and quantum valence bond solids.

As our system sizes become larger, simulating their physics on classical computers
will require exponentially larger resources because of entanglement build-up near a
quantum phase transition. We have demonstrated a quantum simulator in which
all degrees of freedom can be read out microscopically, allowing the simulation of
quantum many-body systems with manageable resources. More generally, the ability
to image and manipulate individual atoms in optical lattices opens an avenue towards

scalable quantum computation.
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Chapter 1

Introduction

Over the past few decades, a wide range of materials with unusual, and often
technologically useful, properties has been discovered. The unifying aspect of these
materials is that they exhibit strong correlations between the electrons [196, 10] that
cannot be adequately described using Fermi liquid theory [121]. Examples include
high-temperature superconductors [117], colossal magnetoresistance materials [152],
heavy-fermion metals [88] and quasi-low dimensional materials [182]. The strong cor-
relations in these materials is a consequence of Coulomb or effective spin-spin inter-
actions that dominate the kinetic energy. The theoretical understanding of strongly
correlated materials is still in its infancy and there are many open questions, particu-
larly in high-T, superconductors. Many so-called minimal models have been proposed
to explain the behaviour of strongly correlated materials, including the Hubbard [89],
t — J [39] and the Anderson models [7]. Despite the apparent simplicity of such
models, exact solutions are not available in more than one dimension and numerical

simulations of large systems require enormous resources.
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The simulation challenge was already anticipated by R. Feynman in 1981, who
pointed out that the simulation of quantum systems on classical computers is in
general a hard problem [55]. To understand why this is the case, we consider as an
example the most general state of a quantum system of N interacting spin—% particles,

which can be written as

W)= D ) Ciinlin iz, i), (1.1)

requiring the specification of 2V amplitudes. This is to be compared with the state
of a classical system, which requires the specification of only N parameters. This
means that for a fixed system size, a computation on a classical computer takes an
exponentially longer time for a quantum system than for the corresponding classical
system. The simulations we refer to here can either be computations to determine
equilibrium properties such as expectation values of observables or n-point correlators,
or even more challenging, simulations of the dynamics. The exponential resources are
only required if the quantum system is not separable into smaller systems, i.e. the
constituents of the system are linked and any part of the system cannot be described
without reference to the rest of the system. This is the concept of entanglement first
pointed out in the famous EPR paradox [51]. Entangled states play an important role
in some very interesting collective condensed matter states such as the Laughlin [115]
or BCS [18] states. The other context they appear in is in the study of quantum
phase transitions, the focus of this work. The state of the the system undergoing
the transition exhibits an increasing degree of entanglement as the critical regime is

approached [161, 186].
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As a solution to the problem of simulating quantum systems, Feynman introduced
the idea of a quantum simulator: a physical quantum system that is easily controlled
and probed can be used to simulate another less accessible quantum system that
is governed by the same physics. In recent years, ultracold atoms in optical lattices
have emerged as a powerful quantum simulator of condensed matter systems [27, 119].
Ultracold atom systems can be brought into the strongly correlated regime using Fes-
hbach resonances [93] or optical lattices [78], and can have long coherence times,
necessary prerequisites for generating and preserving entanglement that makes quan-
tum simulation useful. On the other hand, they are more accessible than condensed
matter systems in several ways. First, many parameters of optical lattice systems can
be dynamically varied such as interaction strengths or lattice geometry. Second, in
comparison to real materials, these systems can be made very clean and impurities or
disorder can be added back in a controlled way. Third, the lattice spacings are about
four orders of magnitude larger than in a solid, allowing the possibility of probing and
manipulating at the smallest length-scale using optical techniques as demonstrated
in this work. Fourth, the dynamics are much slower than in a real solid, making
real-time observations of dynamical processes possible. Finally, the individual com-
ponents of these systems are understood from first principles and complexity can be
built up from these components in a controlled way.

We will focus on studying quantum phase transitions of ultracold atoms in optical
lattices. We investigate the transition from a superfluid to a Mott insulator in a
bosonic system and the transition from a paramagnet to an antiferromagnet in a

quantum spin system. We look at both equilibrium and dynamical properties of the
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resulting many-body states as we cross the phase transition. While the system sizes
are still relatively small, they can be in principle scaled up to the sizes where classical
simulation becomes infeasible.

Until this work, ultracold atoms in optical lattices were studied using bulk mea-
surements. For example, the superfluid to Mott insulator transition has been de-
tected using global phase coherence, measurements of energy gaps and compressibil-
ity measurements [78, 101, 165]. In a sense, this approach is similar to traditional
bulk measurement techniques used in condensed matter such as transport measure-
ments or determinations of heat capacities and susceptibilities. However, over the
last few decades, microscopy techniques that are able to resolve individual atoms
in solids, such as scanning tunneling microscopy [25] or aberration-corrected elec-
tron microscopy [52], have revolutionized experimental work in condensed matter.
We have developed the analogue of these microscopy techniques for ultracold atoms
in an optical lattice: the ability to image and manipulate single atoms on individ-
ual lattice sites, which we refer to as “quantum gas microscopy”. The realization
of this microscopy technique has involved the development a new set of tools in our
laboratory [14, 13], including the preparation of strongly interacting, single layer two-
dimensional ultracold atom systems that are combined with high resolution optics,
as well as techniques to keep the atoms in place during the imaging process.

Quantum gas microscopy opens up three distinct capabilities: (i) imaging the
many-body quantum state with high fidelity and single site resolution, (ii) engineer-
ing the potential landscape of the atoms at a similar length-scale and finally (iii)

manipulating the state of individual atoms. We shows examples of all these applica-
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Figure 1.1: Concept of the quantum gas microscope. A degenerate gas of ultracold
atoms resides in a two-dimensional lattice, a few microns away from the final lens of
a high resolution imaging system. The lattice spacing is small enough (= 0.5um) to
achieve a strongly correlated quantum gas which can be used to simulate the physics
of condensed matter systems. The high resolution system allows the imaging and
addressing of individual atoms in the lattice, capabilities similar to those provided by
scanning tunneling microscopy of solids.

tions in this work. In-situ imaging of many-body states gives direct access to local
observables and correlation functions, and allows the study of local dynamics. The
ability to engineer potential landscapes almost arbitrarily should open the path to-
wards engineering many complex Hamiltonians. Finally, the ability to manipulate the
state should allow the initialization of the system in out of equilibrium states and per-
haps more importantly, opens the door to optical lattice-based quantum computation.
The general concept of the quantum gas microscope is shown in Figure 1.

We apply quantum gas microscopy to the study of quantum phase transitions,
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revealing phenomena that were not amenable to study with bulk measurements. The
first quantum phase transition we study is the superfluid to Mott transition in a
bosonic system, which had been previously observed [78], but we present the first
microscopic study of the transition, including direct observation of the suppression of
atom number fluctuations on lattice sites across the transition as well as local dynam-
ics. The second phase transition is a simulation of a magnetic transition in a quantum
spin chain. The results presented are the first time quantum magnetism has been ex-
plored in optical lattices. We hope that the microscopic study of these two phase
transitions, important in their own right, demonstrates more generally the power of
quantum gas microscopy in performing condensed matter quantum simulations.

The general outline of this thesis is as follows:

e The second chapter gives a general introduction to quantum phase transitions
and critical phenomena from a condensed matter perspective. It provides theo-
retical descriptions of the superfluid to Mott insulator transition and magnetic
quantum phase transitions in spin systems, using the transverse Ising model as

an example.

e The third chapter is an overview of Bose-Einstein condensates in both the
weakly and strongly interacting regimes, with the latter achieved in optical
lattices. The topics covered include band structure in an optical lattice and
the mapping to the Bose-Hubbard model. The onsite and global density distri-
butions are studied as parameters of the model are tuned to induce the phase

transition from the superfluid to Mott insulator.

e The fourth chapter deals with the experimental techniques used throughout the
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rest of this work. These include the creation of two-dimensional condensates
near an optical surface, techniques to control the atom number and reduce the
temperature in the condensate and measures to reduce the disorder in the light
potentials. We delve into the details of quantum gas microscopy including fluo-
rescence imaging of the atoms and the projection of arbitrary light patterns onto
the atoms with high resolution optics. Other techniques that became possible

in our system are also described such as site-resolved modulation spectroscopy.

e The fifth chapter presents results on the microscopic observation of the super-
fluid to Mott insulator transition. The results include single site measurements
of atom number fluctuations across the transition, thermometry down to zero
temperature, high resolution imaging of the shell structure of the insulator,
measurements of local adiabaticity timescales and finally studies of density cor-

relations in the insulator.

e The sixth chapter presents results on the microscopic observation of a mag-
netic quantum phase transition from a paramagnet to an antiferromagnet in a
one-dimensional chain of quantum pseudospins. The results include single site
studies of magnetization across the transition and verification of Neel ordering
through noise correlation measurements, studies of domain formation and adi-
abaticity timescales, preparation of the highest energy many-body state of the

system and manipulation of individual spins in the chain.

e The seventh chapter is an outlook for future work.



Chapter 2

Quantum phase transitions: a

condensed matter perspective

2.1 Classical vs. quantum phase transitions

A classical phase transition is a transformation of a thermodynamic system be-
tween different phases that is induced by a change in the system’s temperature. Ex-
amples include transitions between a solid and a liquid at the melting point, between
a ferromagnet and a paramagnet at the Curie point, and between a thermal cloud
and a Bose-Einstein condensate at the critical temperature of an ultracold dilute
gas of atoms [142]. These transitions can only happen at finite temperature because
thermal fluctuations are needed to drive the reorganization of the atoms or spins in
the system into the new phase. In contrast, quantum phase transitions (QPTs) are
induced by varying a physical parameter of the system other than its temperature,

e.g. a magnetic field or the pressure applied to a solid [161]. Such transitions can
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occur even at zero temperature where all thermal fluctuations are frozen out, because
the reorganization of the system is driven by quantum fluctuations.

Quantum phase transitions can be understood in terms of the energy spectrum of
a many-body quantum system. This spectrum has a ground state and a first excited
state separated by some gap A. This gap depends on the value of the physical
parameter g used to induce the transition. As g is varied, there is an avoided level
crossing between the lowest two states at a critical value g. where the gap reaches
its smallest value. In a thermodynamic system, this gap vanishes, and we have a
phase transition. The properties of the many-body ground state are different on the
two sides of the transition. This difference is reflected in the order parameter of the
transition which is zero on one side and finite on the other. An example of an order
parameter is the magnetization along a particular axis in certain magnetic transitions.
Order parameters usually exhibit a spontaneously broken symmetry in the ordered
phase, e.g. the magnetization breaks rotational symmetry by pointing in a particular
direction in a ferromagnet.

Figure 2.1 shows the phase diagram for a generic quantum phase transition [161].
Strictly speaking, a quantum phase transition happens only at zero temperature. At
T = 0, there is a critical point g. separating a quantum disordered phase from an
ordered phase that is characterized by a finite order parameter. It is important to note
that the quantum disordered phase is only “disordered” in the sense that the order
parameter vanishes in that phase and there is no spontaneously broken symmetry,
i.e. it still has zero entropy at 7' = 0. As the temperature is increased, the ordered

phase will undergo a classical phase transition to a disordered phase at a critical
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Figure 2.1: Generic phase diagram for a quantum phase transition. At zero temper-
ature, a critical point separates the ordered and disordered quantum phases. These
phases persist at finite temperature, with the solid curve indicating the phase transi-
tion boundary between the ordered quantum phase and the classical disordered phase
at a critical temperature that depends on the value of the tuning parameter g. A fi-
nite temperature quantum critical region extends above the zero-temperature critical
point.

temperature 7., which goes to zero at the quantum critical point. We can still detect
signatures of a quantum phase transition even for systems at finite temperature if the
characteristic energy scale of the quantum fluctuations Aw dominates kgT'. At finite
temperature, we can talk about a quantum critical region above the quantum critical
point, and this is the region that is perhaps most interesting to study theoretically.
Such a phase diagram has been recently explored in the field of ultracold atoms by

looking at the finite temperature superfluid to Mott transition [184] and examples

illustrating this phase diagram are given in Table 2.1.
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Model Order parameter | Broken symme- | Ordered Quantum dis-

try phase ordered phase
Transverse z-magnetization | up/down  spin | ferromagnet| quantum
Ising (S.) symmetry Zs paramagnet
Bose- global phase (a) | gauge symmetry | superfluid | Mott insula-
Hubbard U(1) tor

Table 2.1: Examples of the phase diagram in Figure 2.1. These examples are discussed
in more detail in the following two sections.

Quantum phase transitions have only been studied in a handful of strongly cor-
related electron systems (Table 2.2), in part because of the difficulty of finding ma-
terials that are experimentally tunable into the quantum critical regime. In recent
years, there have been many observations of quantum phase transitions with cold
atoms including the superfluid to Mott insulator transitions with bosons [78] and
fermions [101], the transition to an itinerant ferromagnet in a Fermi gas [99] and the
pinning transition for a Luttinger liquid of bosons [84]. In the next two sections,
we will discuss in detail two specific examples of quantum phase transitions that are
relevant to our cold atom experiments: magnetic phase transitions in Ising models

and the superfluid to Mott insulator phase transition.

2.2 Quantum phase transitions in Ising models

In this section, we will consider systems of localized spins on a lattice that inter-
act with each other. In a solid, the interactions can be magnetic dipole interactions
between atoms with unpaired spins, spin-dependent electrostatic interactions (di-
rect exchange), or even anion-mediated magnetic interactions between two transition

metal ions (superexchange) [111, 6]. Spin systems can exhibit different orderings in
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Material | Classification | Experimental| Competing orders Reference
tuning
CoNb,Og | magnetic in- | magnetic quasi-1D Ising ferromagnet, | ref. [42]
sulator field quantum paramagnet
TICuCls | magnetic in- | pressure dimer antiferromagnet, | ref. [158]
sulator dimer spin-liquid
CePd;Sis | heavy pressure antiferromagnet, paramag- | ref. [173]
fermion net
metal
SrsRusO7 | metallic magnetic possible electronic nematic | ref. [81]
metamagnet | field order, drives polarization of
spin Fermi seas

Table 2.2: Examples of quantum phase transitions studied in solids. These systems
are strongly correlated insulators or metals that also exhibit competing magnetic
orderings near the quantum critical point. The material is typically brought to the
quantum critical regime by tuning a magnetic field, doping level, or the pressure
applied to the solid to change ratios of exchange couplings.

their ground states. Ferromagnetic states have a non-zero magnetization because the
intrinsic interactions prefer the alignment of the spins in the same direction picked by
spontaneously breaking rotational symmetry. Paramagnetic states also have a finite
magnetization, but in this case due to the alignment of spins with an external field.
On the other hand, antiferromagnetic states have zero net magnetization, but finite
and opposite magnetizations on two sublattices, e.g. in a chain, this would correspond
to spins alternately pointing in opposite directions.

The behaviour of spin systems with low effective dimensionality or spin is often
dominated by quantum fluctuations, making a quantum treatment of these systems
necessary and yielding much richer physics than classical spin systems. In classical
magnetism, the spin is an n-component vector of fixed magnitude, and models with
n = 1,2 and 3 are known as Ising, XY and Heisenberg models respectively. The spin

interactions have the form S; - 5’; where 7 and j denote nearest neighbour sites on the
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lattice. On the other hand, in quantum magnetism, the classical vectors are replaced
with quantum spins. For example, in the classical Ising model, each site of the lattice
is associated with a variable that can have values of £1. In the quantum Ising model,
we have a quantum spin—1/2 on each site. Each spin can be in an “up” state, “down”
state or any superposition of these two states. The quantum system with N sites has
a Hilbert space with 2V dimensions. The Hamiltonian has the classical spin vectors

replaced with Pauli matrices for spin-1/2 particles
Oy = Oy = Oy = , (2.1)

which obey the usual commutation relations [0, 0;] = 2¢;;1iho,. The coupling of spin
operators in the Hamiltonian determines the classification of the quantum model,

tol olol and

e.g. Ising models have ¢'c? terms, while Heisenberg models have o%o?, o

olal terms. For the XY and Heisenberg models, the interactions are said be isotropic
if they are the same in all spatial directions and anisotropic otherwise.

In order to study magnetic quantum phase transitions, we will need a Hamiltonian
with non-commuting terms, a necessary requirement to drive the phase transition, and
the terms should favor ground states with different symmetries. One example of a
simple Hamiltonian that satisfies these properties is the quantum Ising model in a

transverse field [161]. For a one-dimensional chain, this Hamiltonian is

H= Z —Jolottt — hot! (2.2)
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where J > 0 is the spin-spin coupling and h is the external field along the x direction.
We define a dimensionless parameter g = h/J. For ¢ — oo, the ground state has
all the spins aligned with the field pointing along the z direction: | -——— ...). For
g — 0, the ferromagnetic interactions align all the spins together either along the
positive or negative z direction, with the symmetry being spontaneously broken, i.e.
[ ) o | LU ).

The two extremes of g are connected by a phase transition that occurs exactly
at the critical point ¢ = g. = 1. To understand what this means, we need to define
an order parameter for the transition, which we take to be the magnetization along
the z-direction given by m = (0,). The order parameter m is non-zero only in the
ferromagnetic state where g < g.. As indicated before, we expect an avoided level
crossing between the many-body ground state and the first-excited state at the critical
point, with a gap that shrinks with the chain length. This can be verified by studying
the single particle excitation spectrum. For this particular Hamiltonian, the Jordan-
Wigner transformation can be used to obtain the spectrum exactly [161], and the

zero-momentum single particle excitations have energy

A=2J]1— g, (2.3)

and the gap vanishes at g = g. as expected.

In Chapter 6, we shall experimentally investigate a close cousin of the transverse
Ising model, where the interactions are antiferromagnetic and the applied field can
have both transverse and longitudinal components. We find a phase transition be-

tween an antiferromagnetic and paramagnetic phase, and in fact the two models are in
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the same universality class, meaning that their behaviour is identical near the critical
point [163].

An interesting feature of this general class of quantum magnetic models, known as
quantum rotor models [161], is that their physics formally maps onto that of classical
models in one higher spatial dimension [161]. For example, a zero-temperature quan-
tum Ising chain in a transverse field maps onto a finite temperature classical zero-field
Ising model on a square lattice, where the temperature in the classical system corre-
sponds to the transverse field in the quantum system. This allows us to use a lot of
our intuition from classical statistical mechanics to understand such quantum phase
transitions. In this case, it is well known that a 2D classical Ising model exhibits a
phase transition between an ordered and disordered phase at some critical tempera-
ture. The energy gap A of the quantum system is related to the correlation length &
in classical system through A ~ 1/, i.e. the vanishing energy gap corresponds to a
diverging length-scale.

Finally, we note that magnetic quantum phase transitions have been the subject
of experimental studies in solid-state systems [161, 162], e.g. transverse Ising models
have been investigated in LiHoF, [26] and in CoNbyOg [42] by tuning the transverse
field, and pressure-induced quantum phase transitions of dimer spin liquids have been
studied in TICuCl; [158]. While traditional applications of magnetic materials, such
as in hard-disks, have relied on classical spin systems, low temperature properties
of magnetic materials in a quantum regime are being investigated in many labs,

including industrial ones, because of potential applications in future devices [17].
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2.3 The superfluid to Mott phase transition in the

Bose-Hubbard model

So far, we have focused our attention on magnetic models of spins localized on a
lattice. Another interesting class of phase transitions involves a redistribution of the
charge, or in a neutral system, the density, degree of freedom. Such phase transitions
appear in describing transitions between conducting and insulating states in solids.
The Hubbard model, a simple model of particles (bosons or fermions) interacting on a
lattice, exhibits a phase transition of this class. In this model, the particles can either
tunnel between neighbouring lattice sites or interact when they are on the same site.

The Fermi-Hubbard model has been the subject of intense research because it
might be a minimal model for understanding high-temperature superconductivity in
the cuprates [9]. Nevertheless, we will immediately specialize to the better understood
Bose-Hubbard model [56], where the particles are spinless bosons on a lattice. These
bosons could be Cooper pairs in a quantum-regime Josephson-junction array [64],
helium atoms adsorbed on a porous substrate such as Vycor [45] or rubidium atoms
in an optical lattice [78].

Introducing operators to create (destroy) a boson on the ith lattice site, a; (a;),

we write down the Hamiltonian describing the dynamics of the system

H =7 (ala; +ala;) +U/2 3 i — 1) — >y (2.4)
(i7) i i

where n; = d!&i is the number of bosons on the ith lattice site, J is the tunneling

matrix element between neighbouring lattice sites, U is the onsite interaction energy
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and p is the chemical potential, which can be used as a constraint to fix the total
atom number N = > . 7;. This Hamiltonian is a valid description in the tight-binding
regime, where nearest neighbour tunneling is much faster than next-nearest neighbour
tunneling and when the interactions are short-range, so that they are non-negligible
only for particles on the same site. For example, for atoms in an optical lattice,
the interaction is a contact interaction arising from the underlying van der Waals
potential [142].

The quantum phase transition in this model is induced by tuning the interaction
to tunneling ratio U/J. For large J, the ground state particles are delocalized over

the entire lattice in a superfluid state given by

W) = (Z al) 10) (2.5)

where |0) is the vacuum. On any particular lattice site, the particle number is not
fixed and exhibits Poissonian number fluctuations (Fig. 2.2(b)). The phase ¢; and
particle number n; on a site are conjugate variables obeying [QAS,, ﬁ,} = 4. This leads
to a well defined phase on each lattice site, and the tunneling locks these phases
together across the lattice. On the other extreme of large U, number fluctuations are
suppressed. For a given chemical potential u, the particle number per site is fixed and

constant across the lattice, forming a state known as a Mott insulator (Fig. 2.2(a))

@) =TT (al) " 10) (2.6)

where n is the particle number per site. The insulating property arises as a result of
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a many-body energy gap on order U that suppresses charge transport.

A first attempt at understanding the phase diagram of the system can be obtained
using a mean field approach [161], by introducing a complex field W), representing
the “mean field” that replaces operators on nearest neighbours. The mean field

Hamiltonian is

Hyr =) <—J\11MF6L1 — JUhypti + U/2> di(Ri — 1) — o Z”) (2.7)

i

The ground state is found by minimizing the energy over ¥,,r. It turns out, as
with the magnetic phase transitions considered in the previous section, that this tran-
sition can be described in the Landau framework of second order phase transitions,
with Wy = (a) as the order parameter. In the Mott insulator, the order parameter
is zero as there is no well defined phase, while in the superfluid, there is a broken U (1)
symmetry and Wy, # 0. The mean field phase diagram in z.J/U — u space is shown
in Figure 2.2(c), where z is the coordination number of the lattice. It exhibits a series
of Mott insulating lobes with an increasing number of particles per site for increasing
chemical potential given by n = [u/U]. The lobes shrink for higher particle number
per site, a consequence of Bose enhancement that enhances quantum fluctuations
that destroy the Mott state. It is important to note that, in a homogeneous system
(constant chemical potential), the Mott state cannot be reached from the superfluid
state by reducing J/U unless the ratio of particle number to number of lattice sites
is an integer.

Besides the lack of broken symmetry, the Mott phase is distinguished from the

superfluid phase by two other properties. The first is the existence of a many-body
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Figure 2.2: Mott insulating and superfluid phases in a lattice. (a) When the inter-
actions dominate the tunneling, the system is in a Mott insulating state with atoms
localized on lattice sites and a fixed atom number per site. (b) On the other extreme
of dominant tunneling, each atom is delocalized over the entire lattice and the onsite
atom number exhibits Poissonian number fluctuations. (c¢) Mean field phase diagram
of the Bose-Hubbard model as a function of the tunneling to interaction ratio (zJ/U)
and the chemical potential (x/U), both in units of the interaction. The phase di-
agram has a series of Mott insulating lobes at low zJ/U, indicating that the atom
number per site is fixed but depends on the local chemical potential.
energy gap, that becomes U in the limit of vanishing tunneling. The superfluid phase
on the other hand can be excited at any energy due to the existence of continuum of
spin wave modes where the phase slowly varies from ones site to the next. A related
characteristic of the Mott insulator is that it is incompressible. The compressiblity,
k is defined by the response of the density to a change in the chemical potential
o

K= o (2.8)

and is zero only in the Mott phase.
It is interesting to note that, unlike the magnetic models considered in Sec. 2.2, the
superfluid to Mott transition, in general, cannot be mapped onto a classical model

in one higher dimension. However, there is a particular case in which this works,
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namely a transition at fixed density that occurs when crossing the phase diagram
orthogonally to a Mott lobe tip. In that case, the transition is the universality class

of the d + 1 XY model [56].

2.4 Critical phenomena

The behaviour of many-body systems near quantum critical points is a subject of
intense research [162, 160]. Near a critical point, the correlation length of the system
diverges and its dynamics slow down. Response functions of the system, such as
the susceptibility of a magnetic system, also diverge, making for example magnetic
systems very sensitive to small fields.

Near a critical point, diverging or vanishing observables are characterized by pa-
rameters known as critical exponents, which describe a power low scaling with the
tuning parameter. For example the correlation length £ diverges as £ ~ |g — g.|™
where v is a critical exponent, while the gap A vanishes as A ~ |g — g.|*” where
zv is another critical exponent. Renormalization group theory predicts that many
different physical systems have the same behaviour near their critical points, meaning
that they have the same critical exponents [192]. Such systems are said to be in the
same universality class.

In order to study critical phenomena, the system should be homogeneous and suf-
ficiently large; inhomogeneous systems will have different critical points for different
parts of the system, effectively smearing out the transition, while small systems will
not exhibit sharp features in the transition. The local probing capability in our exper-

iments allows us to avoid averaging over inhomogeneities which are typically present
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in cold atom systems because of trapping potentials. Ref. [197] discusses various ways
to probe critical physics in the superfluid-to-Mott transition including the scaling of
density profiles, quantum critical transport and investigations of the Kibble-Zurek
mechanism in these systems. In the magnetic system considered in Chapter 6, we
have demonstrated that we can achieve a simultaneous phase transition across the
whole magnet by making the applied fields as homogeneous as possible, but larger

systems will be necessary for explorations of critical phenomena in that system.



Chapter 3

Ultracold bosons in optical lattice

potentials

The experiments we will describe use ultracold bosons in optical lattices to simu-
late quantum phase transitions studied in condensed matter physics. At first glance,
dilute atomic gases are a curious system to try to simulate phenomena that happen in
solids. For example, the neutral atoms do not interact via Coulomb interactions and
the interatomic spacings are about four orders of magnitude larger than in a solid.
Nevertheless, dilute atomic gases can be cooled to the quantum degenerate regime
that characterizes electrons in a solid at room temperature. Band structure can be
introduced through periodic potentials created with optical lattices, and a variety of
interactions can be engineered, ranging from simple contact interactions to long-range
dipolar interactions with cold molecules [134]. The issue of large interatomic spacings
does not matter as long as interactions can be made to dominate the behaviour of the

system so that it is in a strongly correlated regime; in fact the large spacings open

22
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up the possibility to optically probe and manipulate the atoms and slows down the
dynamics, making them more amenable to study.

Our experiments use rubidium-87, a bosonic species. While ultracold fermions give
rise to the Fermi sea structure of electrons in a solid, they are experimentally more
difficult to cool than bosons. Ultracold bosons are interesting in their own right:
Cooper pairs in superconductors and superfluids are effectively bosonic, and their
behaviour is captured quite well by interacting Bose-Einstein condensates. For simu-
lating magnetism with localized spins, the nature of the particles is not as important,
although the traditional superexchange mechanism for producing interactions [49]
naturally produces interactions of different signs for fermions and bosons.

Our experiments will simulate electron systems in which interactions play a dom-
inant role. Often, the kinetic energy of the atoms in an ultracold system, both due
to the finite temperature of the atoms and their quantum delocalization, competes
with interactions. One approach to bringing a cold atom system to a strongly in-
teracting regime is to increase the interaction strength. For example, the contact
interaction that is naturally present can be enhanced through a Feshbach resonance
in certain atomic species [93]. In bosons, the resonance also enhances three-body
losses which complicates this route. Alternatively, it might be possible to utilize
another kind of stronger interaction such as the electric dipole interaction between
Rydberg atoms [187]. A second approach is to reduce the kinetic energy, by cooling
the system to very low temperatures where thermal fluctuations are negligible and
by increasing the effective mass of the atoms. The latter is easily accomplished by

putting the atoms in an optical lattice. In the following sections, we review the theory
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of Bose-Einstein condensates in both the weakly interacting regime and in a strongly

interacting regime achieved through the optical lattice route.

3.1 Bose-Einstein condensates in the weakly inter-
acting regime

Bose-Einstein condensation in a dilute gas of alkali atoms was first experimentally
achieved in 1995 [5, 47]. In a condensate, a macroscopic number of atoms occupies
the motional ground state. Interactions are typically weak, as characterized by the
quantum depletion fraction [28] ~ \/nia‘;’ < 1 which measures the reduction of ground
state occupation due to the interactions. Here n is the mean density of the sample and
a, is the s-wave scattering length quantifying the interaction strength. Therefore, the
wavefunction of the condensate can be approximated as a product of identical single
particle wavefunctions, or in other words, the whole condensate can be regarded as a
“superparticle” which is described by a Schroedinger equation. When the interactions
are included in a mean field picture, this Schroedinger equation is known as the Gross-
Pitaevskii equation [142]

OY(r, 1)
ot

(_iw T Vinr) + g0, t>|2) (7 1) = ih (3.1)

2m

where V. (r) is the external trapping potential and the interaction paramter g is

given by

B Anh2a,

g=—" (3.2)
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. Equation 3.1 correctly predicts the density profile of condensates in parabolic traps
(see Sec. 4.2.3 for the case of a 2D condensate), as well as many dynamical properties
of condensates. The ratio of the interaction to kinetic energy in this system is given

by

€int an D—2
~ 7~ 4 D q, 3.3
€kin D2 /m n¥P T (3:3)

where D is the dimensionality of the system. This quantity is typically small, and
increases only weakly with density for 3D systems. Interestingly in 1D systems, the
system gets more strongly interacting for lower densities, leading to the formation of

strongly interacting states such as the Tonks gas [104, 139].

3.2 Bose-Einstein condensates in the strongly in-
teracting regime

The technique we use to bring ultracold atoms into the strongly interacting regime
is to put them in an optical lattice, which reduces their kinetic energy relative to their
interaction energy. Optical lattices are periodic light intensity patterns that result
from the interference of light beams with a fixed phase relationship. The light patterns
can be used to trap atoms through the AC Stark effect at the nodes or antinodes of
the intensity pattern. Bose condensed atoms are already in a many-body ground
state and by adiabatically turning on the optical lattice potential, the atoms can be
loaded into the many-body ground state of the periodic potential. In the following
sections, we discuss how these potentials are created and the behaviour of a single

atom as well as weakly and strongly interacting atoms in such potentials.



Chapter 3: Ultracold bosons in optical lattice potentials 26

3.2.1 Optical dipole potentials

Optical potentials are created by illuminating atoms with light having a spatially
varying intensity. If the light is far-detuned from the atomic resonance, the light-
matter interaction is mostly conservative [82, 130]. The electric field of the light
creates a rapidly oscillating dipole moment d for the atom. For an atom with complex
polarizability a(w) in an oscillating field E, the dipole is given by d = «E. This
induced dipole interacts with the field, which lowers its energy V:

V= —(d-E)- —%Re(a(w))|E|2 _ —%OCRe(a(w))I (3.4)

where the brackets denote a time-average and [ is the light intensity. The atomic
polarizability can be approximated by the simple Lorentz model of a classical oscillator

with natural frequency wy being driven at frequency w

[/w?
= 6megc” ’ : 3.5
a(w) Treoc wid — w? — (W /W)l (3.5)
The on-resonance damping rate I' can be related to the matrix-element © = —er that
connects the ground (|g)) and excited (|e)) states
Wy 2
r [(elplg)]"- (3.6)

B 3meghc?
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For light with large detuning from the atomic resonance A = w — wy, a rotating wave
approximation yields a simplified expression for the dipole potential

N 3rc? T

V ~ :
2wi A

(3.7)

Using a spatially varying light intensity, almost arbitrary potential landscapes can
be engineered. For example, a focused Gaussian beam confines the atoms at its waist
for light red-detuned with respect to the atomic resonance and repels them from
that region for blue detuning. A one-dimensional optical lattice can be created by
interfering a light beam with its retroreflection, creating a sinusoidally varying light
intensity pattern with period A/2 where A is the wavelength of the light (Fig. 3.1(a)).
This standing wave pattern can be created in all three directions to obtain an egg-
carton potential for the atoms (Fig. 3.1(c)), although care has to be taken that the
beams along the different axes do not interfere, for example by having a sufficient
detuning between them to time-average the interference. In Sec. 4.5.2, we describe a
different way of creating optical lattices by projecting an intensity pattern onto the
atoms using an imaging system.

Although the light-atom interaction is mostly conservative, there is residual light

scattering in a lattice. The scattering rate I'y. is related to the potential V' through

Fsc = (38)

B> =
= <

This scattering leads to heating of the many-body state in the lattice [68, 144]. The

heating can be either due to ground-band heating or interband transitions (Fig. 3.2).
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Figure 3.1: Atom density distributions for different lattice geometries. (a) Two coun-
terpropagating beams produce a one-dimensional lattice where the atoms reside as
“pancakes” at the nodes (anti-nodes) for a blue-detuned (red-detuned) lattice. (b)
Two-dimensional lattice created with two sets of orthogonal beams. The beams in
each set are prevented from interfering with the other set, e.g. by picking orthogonal
polarizations. The atoms reside in one dimensional tubes. (c) Three-dimensional
lattice created with three sets of orthogonal beams.

The first mechanism for heating involves an optical transition to an excited state
followed by a decay back the ground band but with a change in the quasi-momentum.
The resulting spread in quasi-momentum leads to decoherence of the wavefunction.
In the second mechanism, the atom decays to a higher band. Which transitions
are preferred depends on the Lamb-Dicke parameter describing the transition and
whether the atoms sit at the nodes or antinodes of the intensity pattern. In a deep
lattice, it can be shown that the interband heating rates for equal red and blue
detunings are identical [68]. The reason for this surprising observation is that while
the scattering rate in a blue lattice is smaller because the atoms sit at the nodes rather
than the antinodes, each decay leads to an increase in the vibrational level, whereas
in a red lattice interband transitions are suppressed by the Lamb-Dicke effect.

In our work, we use blue detuned lattices for two reasons. First, for a shallow

lattice, the blue detuning leads to lower heating rates compared to an equal red
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Figure 3.2: Heating in a lattice by spontaneous emission. The atoms are excited to
a higher electronic state by absorbing a photon from the lattice beams. The heating
occurs due to a spontaneous emission event where the atoms fall back to the lower
electronic state. In an interband transition, the atoms decay to a higher band, while
in an intraband transition, the atoms decay back to the same band, but with a larger
spread in quasimomentum.

detuning. Second, blue lattices should have less disorder than red lattices. Disorder
arises because of the interference of stray scattered light with the lattice light. This
interference effect happens at the antinodes of the light intensity pattern. In a red
lattice, the atoms sit at the antinodes, so the interference leads to offsets proportional
to the lattice depth modulation dV. On the other hand, in a blue lattice, the atoms
sit at the nodes, so the primary source of disorder is due to a change in the zero
point energy of the atoms, an effect on order of (hw;/V)dV. Here w; is onsite trap

frequency, and fw;/V is usually a fraction of unity in a deep lattice.

3.2.2 Theory of non-interacting atoms in an optical lattice

We consider the physics of a single atom moving an optical lattice. The Hamilto-

nian for the atom in a one-dimensional retroreflected lattice is

A2

p 2
H=—4YV T .
Sy o cos” (k) (3.9)
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where p is the linear momentum, V; is the lattice depth and k is the wavevector of
the lattice potential. It is well known that the eigenstates of the Hamiltonian in such

a periodic potential are Bloch wavefunctions [11] that can be written as
w(g”) (x) = glaz/h . ug") (x) (3.10)

where u is a function with the same periodicity as the potential. The wavefunctions
are labelled with two indices, the band index n and the quasimomentum ¢q. The
quasimomentum plays a role very similar to a linear momentum in a non-periodic
potential, except that it only makes sense to define it within what is known as a
“Brillouin zone”. The conventionally taken first Brillouin zone covers the range be-
tween ¢ = —hk and g = hk. Intuitively, this restriction can be understood to be a
result of Bragg reflection: a particle that travels at a momentum corresponding to
the edge of the zone will be perfectly reflected.

The energy spectrum, known as the band structure, can be obtained by decom-

posing both the potential and the periodic part of the wavefunction into Fourier sums

V(iz) = Y Vet (3.11)

ul™(z) = ch"’q)emkm (3.12)

Using these forms in 3.9, the band structure can be numerically obtained, and is
shown for different depths in Figure 3.3. The bands get flatter with increasing lattice
depth, corresponding to an increase in the effective mass of the particle, given by the

inverse curvature of the band. In fact, in the tight-binding limit, we can define a
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Figure 3.3: Band structure in an optical lattice. Shown are the first five bands in the
lattice for increasing lattice depth. As the depth increases, gaps open up between the
bands.

tunneling matrix element between neighbouring lattice sites, and this turns out to be
simply a quarter of the ground-band energy width [96].

The Bloch wavefunctions describe delocalized atoms in a lattice and are a valid
description in the absence of interactions. As we will see in the next section, strong
enough interactions will drive a localization of the atoms on lattice sites, and at that
point, it makes more sense to use a localized set of basis wavefunctions, known as
Wannier wavefunctions, that are created as a superposition of Bloch functions at all
quasimomenta. For an atom on site ¢ in the nth band, the Wannier wavefunction is
given by [106]

wy(x — x;) = N2 Z eiqxi/hqﬁf]") (x) (3.13)
q

where N is a normalization factor. In a deep lattice, these wavefunction look very

similar to the harmonic oscillator wavefunctions, except with fatter tails that increase
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the tunneling matrix elements to neighbouring sites.

3.2.3 Mapping onto the Bose-Hubbard model

A many-body state of atoms in a shallow lattice is in a superfluid state where
each atom is delocalized over the entire lattice. The many-body wavefunction can be
thought of as an array of coupled mini-condensates on the lattice sites, and tunneling
locks the phases of the condensates to each other. With increasing lattice depth, the
tunneling drops exponentially, and the interactions play an increasingly important
role in the description of the system. The atoms localize forming a Mott insulator as
described in Sec. 2.3. The Bose-Hubbard Hamiltonian that was used in that section

to capture the essence of this phase transition
H =7 (ala; +ala;) +U/2 3 i — 1) — >y (3.14)
(i) i i

has two microscopic parameters, J and U, that can be calculated from first principles
using the ground state wavefunctions deduced from the band structure calculation
described in the previous section. The tunneling J along any axis is given by

J = —/dxw(x — ;) ( h—28—2 + Wat($)) w(x — ;) (3.15)

 2m 022

for any neighbouring sites ¢ and j. The tunneling dependence on the depth can be
expressed in a universal way for any separable lattice potential if these quantities are

expressed in lattice recoil energies, and such a plot is shown in Figure 3.2.3(a). The
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Figure 3.4: Dependence of the microscopic Bose-Hubbard parameters on the lattice
depth. (a) The tunneling between neighbouring lattice sites falls exponentially with
increasing lattice depth, while (b) the interaction increases weakly. (c¢) The ratio of
the interaction to the tunneling can be easily varied over several orders of magnitude.

interaction can be written as

4 2
mha, / | (r)|dr. (3.16)
In the two dimensional lattices we use, the onsite wavefunction factorizes into
U(r) = wa(@)wy(y)bno(2) (3.17)

where ¥y is the ground state of a harmonic oscillator. In a square lattice, this

reduces to

2 2

m 2mh

and is shown vs. the lattice depth in Figure 3.2.3(b), along with its ratio to J

(Fig. 3.2.3(c)).
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3.2.4 Shell structure in the presence of harmonic confine-

ment

The Hamiltonian in Eq. 3.14 describes atoms in a spatially homogeneous periodic
lattice potential. Experimentally, lattices are usually created with beams with a
Gaussian profile. Near the center of the beam, where the atoms reside, the potential is
well-approximated by a harmonic trapping potential on top of the lattice. If the site to
site variation of this potential is slow compared to the lattice spacing, the local density
approximation (LDA) can be invoked [20, 154, 155, 108]. In this approximation, the
system is treated as being locally homogeneous, so we can define an effective local
chemical potential on the ith site u; = p—¢;, where p is the global chemical potential
and ¢; is the local energy offset due the harmonic confinement given by ¢; = gmw?a?i?,
with a the lattice spacing.

In the LDA, the harmonically trapped lattice gas samples a line of constant z.J/U
in the phase zJ/U — p phase diagram, that extends from the global p at the center
of the trap to zero at the edge of the trap. In the Mott regime, this leads to the
celebrated shell structure that has been experimentally verified [61, 35, 66].

In Sec. 5.2.4 we present high-contrast, high-resolution images of this shell struc-
ture as the atom number is varied. The number of shells observed depends on the
interaction energy between the atoms, the transverse trapping frequency and the
atom number. In the zero tunnelling limit, there are n shells and the (n + 1)th shell
just starts to appear when

N- "0 (3.19)

mw?a?
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Mean density

Figure 3.5: Shell structure at finite temperature in the zero-tunneling limit. The
boundaries between the shells are sharp at low temperature, and become progressively
smoother at higher temperatures. Eventually, the shell structure is completely washed

(atoms per site)

out at T'/U ~ 0.2.

where w is the transverse trapping frequency. Finite tunneling and temperature
smoothes the shell boundaries. Most of the entropy in a Mott insulator is actually
stored in the layers between the Mott shells because excitations are easiest to create
there. The entropy distribution within the shell structure is discussed in Refs. [67,
148]. Figure 3.5 shows the shell structure for increasing temperature 7/U in the

zero-tunnelling limit. At T'/U ~ 0.2, this structure is almost completely smeared out,

setting an upper bound on temperatures required to observe it.
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Experimental apparatus and

techniques

Publications based on the work described in this chapter:

“A quantum gas microscope for detecting single atoms in a Hubbard-
regime optical lattice”, W. Bakr, J. Gillen, A. Peng, S. Foelling and M.
Greiner, Nature 462, 74-77 (2009)

“Two-dimensional quantum gas in a hybrid surface trap”, J. Gillen, W.
Bakr, A. Peng, P. Unterwaditzer, S. Foelling and M. Greiner, Phys. Rev.
A 80, 021602(R) (2009)

The quantum phase transitions described in this work are studied using a Bose-
condensed gas loaded into a two-dimensional optical lattice that resides at the focus
of a high numerical aperture system able to resolve individual sites of the lattice. In
this chapter, we briefly discuss the different parts of this “quantum gas microscope”
and the techniques we use to prepare samples studied with the microscope as well as
to probe and engineer those samples. Further details on the experimental apparatus

can be found in these theses [72, 141].

36
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A typical experimental cycle consists of preparing a 3D condensate in a magnetic
trap, extracting atoms from the condensate to prepare a monolayer at the focus of
the objective, adiabatically bringing the cloud into a strongly correlated regime using
an optical lattice, performing the desired experiment and finally imaging the den-
sity /spin profile at the atomic level. The imaging process is destructive and provides
a snapshot of the system, i.e. it projects the wavefunction onto a particular realiza-
tion. Repetitions of this cycle are then used to extract statistical properties of the

wavefunction such as the distribution functions of observables or various correlators.

4.1 Preparing the Bose-Einstein condensate

Our experiments start with a 3D BEC of ~ 5 x 10* 8Rb atoms prepared in the
|FF=1,my = —1) state. The BEC is created by loading a magneto-optical trap for
8 seconds, resulting in 10° atoms at a temperature of 40uk after optical molasses
cooling. We then magnetically transport the atoms into a glass cell with very good
vacuum (sim40s atom lifetime) [77] where we perform forced RF evaporation in a
tightly confining QUIC trap [53]. The Thomas-Fermi radii of the trapped condensate

are (3.1,3.1,27) um.

4.2 Creation of two dimensional condensates using

surface traps

To obtain a strongly interacting system in an optical lattice, it is desirable to have

the smallest lattice spacing possible. This ensures that the interaction energy is large
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compared to other energy scales such as the temperature of the cloud and that the
experiments can be performed quickly compared to the time-scale for decoherence
processes. The smallest possible lattice spacing is half the wavelength of the light
used to create the lattice. Resolving individual sites in a lattice with such a spacing
requires an imaging system whose depth of focus is also on the order of a wavelength
of light. Therefore, it is not possible to have multiple atom planes loaded in a 3D
lattice appear in focus simultaneously. Light collected from out-of-focus atom planes
“washes out” the image of the in-focus plane. There are two solutions to this problem.
The first is to illuminate only one plane of the 3D sample at a time. The second is
use an atomic monolayer as the sample, which is the solution we adopted.

Monolayers are gases in the 2D regime characterized by a strong confinement hw.,
in one direction that sets an energy scale much larger than that given by either the
temperature kg1 or interactions U (hw, > kgT,U), and a weak confinement along
the other two axes [75, 159, 181, 174, 107]. Such systems are of intrinsic interest,
for example in studying the Berezinskii-Kosterlitz-Thouless (BKT) transition [110]
recently observed in ultracold atoms [83, 168, 40]. By adding lattice potentials in the
plane [107, 179], these systems are also anticipated to be useful for investigations of
2D antiferromagnets and d-wave superfluid states [117].

Different approaches for the preparation of 2D gases have been realized [27], in-
cluding evanescent wave traps and RF slicing. Repulsive evanescent wave (EW)
potentials were originally introduced to reflect atoms from surfaces [16, 113]. They
were combined with gravity to form a gravito-optical surface trap [138, 85] in which

a 2D BEC was observed [159]. The strongest axial confinement in 2D systems has
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been achieved in optical dipole standing wave (SW) traps where a stack of 2D planes
is populated by a BEC [181, 107, 179]. It is possible to empty all but a few planes by
a radio-frequency “knife” [181, 170], but precisely controlling the population remains
a challenge, in particular for traps with small periodicity.

We have investigated two different approaches to preparing 2D clouds. The first
utilized a hybrid trapping potential based on an evanescent wave and magnetic fields
(Fig. 4.1(a)). The second is based on a two-stage loading into standing waves with

progressively smaller spacings.

4.2.1 Evanescent wave surface trap

The hybrid surface trap [73] is loaded in a two-step sequence shown in Figure 4.1(b-
d). First, the cigar trap in which the condensate is created is converted to a spherical
trap with trap frequencies of 2m(17,20,20)Hz. This trap is moved against a flat,
superpolished glass surface that resides inside the vacuum chamber and is part of
the final lens of the imaging system. Close to the glass, the cloud experiences a
repulsive dipole potential due to an evanescent wave (EW) from a 767nm blue detuned
beam with a spectral width of 2nm which is incident at an angle gy, 12mrad from
the critical angle . and is totally internally reflected inside the glass [82, 21]. The
EW that appears on the vacuum side creates an exponentially decaying potential
Vew (2) = Voexp(—2z/A), where z is the distance to the surface, A the decay length
of the EW and V{ the potential height at the surface given by the total incoming
intensity. The decay length A is given by Ayap/27/(n?sin?(0gw) — 1)1/2 ~ 800nm

where n is the index of refraction of fused silica. The EW potential has a maximum
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Figure 4.1: Evanescent wave trap. (a) The trap is based on a dielectric surface formed
by the superpolished bottom face of a fused silica substrate. Fused to the top of the
substrate is a hemispherical lens designed to be part of a high NA imaging system.
Three potentials form the trap: an EW beam from the top (red dash-dotted lines),
a beam reflected off the bottom side of the surface creates a standing wave (SW,
blue dotted lines) and a parabolic magnetic trap (green dashed lines). (b) Schematic
of magnetic trap potential with BEC closely below surface. The black line denotes
the combined potential. (¢) EW configuration loaded by shifting the magnetic trap
minimum inside the glass generating confinement between the magnetic gradient and
the EW. (d) Atoms loaded into single plane of SW trap, 1.5 ym from the surface.

at a distance of 200nm from the surface, below which the attractive van der Waals
potential dominates. The short decay length of the EW gives rise to large curvatures
that allow tight confinement along the direction of the decay. Trap frequencies of up
to 2w x 1kHz, measured by parametric excitation, can be reached in this configuration.
The weak axial confinement of 20Hz is provided by the magnetic trap.

To further increase the vertical confinement, we use an additional standing wave

(SW) potential. The standing wave potential is generated by reflecting a blue-detuned
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beam off the glass surface from the vacuum side [57]. Incident at an angle dgy = 76°
from the normal, the trap minima in the resulting potential are planes parallel to the
surface and are spaced by ~ 1.5um. We reliably load all of the atoms into a single
node of the standing wave, as the spread of the wavefunction (z,, = 250nm) in the
pure EW trap is much smaller than the spacing of the SW planes. The axial trap
frequency, verified by parametric excitation measurements, is increased to 7+ 0.1kHz
in this trap, taking us deep into the 2D regime. We populate the second node of the
SW at a distance of ~ 3um from the surface.

One problem encountered with the evanescent wave surface trap was the change of
the barrier height over time due to adsorption of condensates onto the glass surface.
Adsorbed metal atoms on the surface form small electric dipoles. Inhomogeneities in
the distribution of these dipoles generate potential gradients which can be stronger
than the inherent van der Waals force of the substrate. This process is quite well
understood [127] and the fields generated decay very rapidly away from the surface.
However, at the distance we operated at, the potentials were strong enough to cause
a significant change in the trap characteristics after loading several hundred clouds.

The diffusion time-scale of these adsorbates has been shown in previous experi-
ments to be on the scale of days to weeks and can be strongly decreased by an increase
in surface temperature [136]. However since heating is impractical for our purposes,
we opted to switch to a different method of preparing a two-dimensional cloud that
still utilizes the surface for referencing the trapping potentials relative to each other
and to the imaging system, but allows us to have the cloud at a much larger distance

from the surface, where the effect of the adsorbates is negligible.
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4.2.2 Two-stage standing wave trap

The second generation method for creating 2D condensates begins by transferring
the cloud from the cigar trap into a single well of a 1D standing wave with periodicity
9.2um created by a beam reflected off the glass substrate. The light for this standing
wave is centered at 755nm, has a 3nm spectral width and is incident at an angle of
2.3° relative to the surface. The condensate is loaded into the first nodal plane from
the surface. The harmonic oscillator width of the condensate at full lattice depth
along the direction perpendicular to the surface is 360nm. By increasing the bias
field the confinement in the 2D plane is relaxed, resulting in an elliptic cloud with
Thomas-Fermi radii (18, 36)um in the 2D plane.

The next stage further increases the axial confinement by transferring into the
1.5um lattice described in the previous section. However, the condensate now resides
in the sixth well from the surface. At this point, the 9.2um standing wave is ramped
down. The surface provides a reproducible way to overlap the nodes of these two
standing waves as well as enhancing the numerical aperture of the imaging system as

described in Sec. 4.5.

4.2.3 Theory of two dimensional condensates

In this section, we briefly summarize the theory of two-dimensional condensates
relevant to our work. In an infinite two-dimensional spatially homogeneous system,
a Bose-Einstein condensate can only exist at 7" = 0 because long-wavelength phase
fluctuations destroy the condensate at any finite temperature [122]. However, in a

trapped system, there is a lower momentum cut-off for the fluctuations due to the
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finite size of the cloud, and true Bose-Einstein condensation at finite temperature is
possible [143]. The transition temperature 7T, is on the order of N'/2Aw,, where N is
the number of atoms and w, is the trapping frequency in the plane of the condensate.

A two-dimensional condensate forms in the regime w, > U > w, where w, is the
axial trap frequency and U is the interaction energy. In a harmonic trap, the conden-
sate wavefunction can be factorized into radial and axial parts ¥ (r, z) = ¥, (r),(2).
The condensate occupies the lowest energy eigenstate of the axial potential given by
the usual harmonic oscillator wavefunction

0. = () " (@)

T2

with zg = /h/mw,. In the radial direction, the Thomas-Fermi approximation of
neglecting the kinetic energy compared to the interactions is justified, and the Gross-
Pitaevskii equation reduces to

(ORI + ) 6 0)0le) = )2 (42)

where o is the radial chemical potential and g is the interaction strength given by
4rh*a,/m, with a, being the s-wave scattering length. Applying [ dz ¢F to both
sides, we obtain an effective 2D interaction gop = g/ (\/ 27rz0). The Thomas-Fermi

profile of the 2D density is nop(r) = |,.(r)|?

1 2

— Tmw?r?
Nep = Max (u, O) (4.3)
92D
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The chemical potential is set by the condition [ dxdy nap(r) = N where N is the

2N
=4 /%_ (4.4)

The Thomas-Fermi radius of the cloud defined through p = imw?R%.,. is

4N 1/4
RTp:( gw) . (4.5)

atom number:

For typical parameters of N = 1000, w, = 27 X 7TkHz, w, = 27 x 10Hz, this yields a

Thomas-Fermi radius of 14um or ~ 20 lattice sites at a lattice spacing of 680nm.

4.3 Using a dimple for producing small cold clouds

In order to obtain a suitable initial density for creating a Mott insulator, the atom
number in the 2D plane must be reduced to a few thousand atoms in a reproducible
way. With RF evaporation, it is hard to achieve small, reproducible atom numbers
because of the difficulty of controlling fluctuations of the magnetic trap bottom to
much better than chemical potential of the condensate. Instead, we use the “dimple
trick” introduced in [146, 86, 180], where atoms from the center of the condensate
are trapped in small volume dipole beam and the rest of the atoms are discarded.
A red-detuned (A = 840nm) beam is focused through the objective to an 8um waist
centered on the cloud, creating a dimple potential in the magnetically confined cloud
as shown in Figure 4.2. The magnetic confinement is then removed and the number of
atoms remaining in the dimple trap is proportional to its depth, with a residual RMS

fluctuation of 6%. A second collinear 840nm beam with a 27um waist and 12nm
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Figure 4.2: Control of atom number and temperature with a dimple potential. A
small focused beam creates a dimple potential in the center of a large magnetically
trapped condensate. A small fraction of the atoms are loaded into this potential,
controlled by the depth of the potential. The magnetic trap is then switched off, and
after a short time, only the cold atoms within the dimple remain. A large waist optical
dipole trap is ramped up and the dimple is ramped down, allowing the condensate to
adiabatically expand, providing a suitable initial density for further experiments.

spectral width is then turned on, and the dimple is adiabatically ramped down to
expand the cloud into the larger beam. The transverse confinement of the condensate
provided by this beam is 9.5Hz.

If the dimple trap is aligned such that it selects atoms out of the center of the
condensate, entropy is removed when the magnetic trap is switched off because the
coldest atoms are at the center. If the dimple is then adiabatically converted into the
larger dipole trap, the temperature of the final cloud should be lower than that of the

initial condensate.

4.4 Incoherent light sources for producing clean

optical potentials

Uncontrolled spatial fluctuations of the potential experienced by atoms are often
present in optical traps. In optical lattices, disorder is a concern when the RMS site

to site fluctuations § are on the order of U (Sec. 5.2.4), or in some experiments, even
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on order of the tunneling (Sec. 6.2.3). Disorder can be either due to onsite offsets or
variations of the vibrational frequencies. Typically, the lattice depth and frequencies
are several 10kHz, while U is several hundreds Hertz. This dictates potential unifor-
mity on the percent level. Most lattice experiments use coherent light for creating
the potentials. In this case, stray light on the 10™* level leads to 4% peak-to-peak
corrugations due to the heterodyning effect of light interference, which makes creation
of clean lattice potentials challenging. These issues are of particular relevance in our
experiment because of in-vacuum glass surfaces that are close to that atoms, as well
as the new projection technique (Sec. 4.5.2) we use to create the lattice.

We preclude the possibility of interference between the lattice light and most
of the stray light from reflections, dust and surface imperfections by using “white”
light with a very short coherence length. The desired interference used in creating
the lattices is still present because of the particular techniques we use to create the
lattices. The 2D lattice is created by projection through the high NA imaging system,
which automatically ensures that the path lengths for the interfering beams is the
same. In the case of the standing wave traps created by reflecting beams off the
surface, the remaining coherence length of the broadband light is still larger than the
interfering distance 2d/ cos gy for atoms located a distance d from the surface.

We have investigated two different sources for generating high power temporally
incoherent light. The first is a tapered amplifier system (Eagleyard Photonics) seeded
with light from a fiber coupled amplified spontaneous emission (ASE) source (Exalos,
Superlum). Interference filters are used to control the bandwidth of the white light

source as well as to suppress resonant ASE components. For the 1D standing wave
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traps, the light is blue-detuned, centered around a wavelength of A\, = 755nm with
a spectral width of 3nm, corresponding to a coherence length of about 100um. This is
short enough to suppress the interference effects of stray light from multiple reflections
and other parts within the setup, e.g. from the curved surface of the hemispheric lens
or from glass cell surfaces. The red detuned beams used in creating the dimple trap
and transverse confinement dipole trap are centered at 840nm with a spectral width
of 1nm.

A second source we have also used is a mode-locked laser (Coherent MIRA-HP)
which is used to generate a similar spectrum to the tapered amplifiers. A pulse-
stretcher is required after the laser to avoid non-linear broadening of the spectrum

after passing through a single-mode fiber.

4.5 Quantum gas microscopy

In this section, we describe our technique for fluorescence imaging of atoms on
resolved sites of a Hubbard regime optical lattice. Similar optical imaging of sin-
gle thermal atoms has been demonstrated in lattices with large spacings (5um pe-
riod) [131] and in sparsely populated one-dimensional arrays [102]. Imaging of 2D
arrays of “tubes” with large occupations has been shown for smaller spacings with

an electron microscope [71] and optical imaging [95] systems.

4.5.1 High numerical aperture imaging

The central part of the set-up is the high resolution optical imaging system in-

tegrated with the 2D atom trap. The imaging system consists of a long working
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distance microscope objective located outside the vacuum chamber which covers a
numerical aperture of NA = 0.55. As an additional front lens of this imaging system,
a hemispheric lens (4mm radius) is placed inside the vacuum. With the quantum
gas placed only a few micrometers from the superpolished flat bottom surface of the
hemisphere, a “solid-immersion” [126] effect occurs, which increases the numerical
aperture by the index of refraction of the hemisphere lens to NA = 0.8, yielding a
diffraction limit of ~ 600nm (FWHM) at an imaging wavelength of 780nm. A draw-
ing of the lens configuration is shown in Figure 4.3(a). The objective was aligned
interferometrically to the in-vacuum hemisphere by sending a plane wave through
the objective and interfering the returning plane wave reflected from hemisphere with
the incoming beam. The resulting interferogram is shown in Figure 4.3(b) showing

wavefront distortion less than \/4.
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Figure 4.3: High resolution optics for single atom imaging. (a) Five element cus-
tom objective that is corrected for a Sbmm thick glass cell window, combined with
a hemispheric in-vacuum lens to obtain an imaging system with NA = 0.8. (b)
Interferogram characterizing aberrations of the imaging system.

The objective is designed to be diffraction-limited for an object point at the center



Chapter 4: Experimental apparatus and techniques 49

of the in-vacuum hemispheric lens. In the case of the evanescent wave trap, the
atoms reside 3um from the surface. At this position, the geometric spot size due to
aberrations is roughly half the diffraction-limited spot size of 600nm at A = 780nm.
However at 10um from the surface, as is the case with the two-stage standing wave
trap, the geometric spot size is double the diffraction-limited spot size. To address
this issue, we calculated the wavefront aberration using a raytracing program (OSLO,
Lambda Research) and decomposed it into its Zernike polynomials. Z, aberrations
can be corrected by changing the distance between the imaging lens and the CCD,
but higher order aberrations (Z4 = 0.30, Zg = 0.03) cannot be corrected this way. We
designed a 0.5mm thick fused silica correction plate with a thickness profile, shown
in Figure 4.4, that corrects the higher order aberrations when inserted right after
the objective. The plate was manufactured by LightMachinery Inc. using fluid jet

polishing.

I 800nm

-200nm

Figure 4.4: Aberration correction plate. The imaging system is designed for atoms
positioned at the glass surface. In our second generation trap, the atoms reside 10um
from the surface, and a corrector plate is need to compensate for aberrations described
by fourth and sixth order Zernike polynomials.
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4.5.2 Optical lattice projection

The periodic potentials in the 2D plane are created by using the microscope op-
tics to make a direct projection of a lithographically produced periodic mask that
contains the lattice structure in the form of a phase hologram [80, 132, 22, 31]. This
is in contrast to conventional optical lattice experiments in which lattice potentials
are created by superimposing separate laser beams to create optical standing waves.
The advantage of the new method is that the geometry of the lattice is directly given
by the pattern on the mask. The imaged light pattern, and hence the potential land-
scape, can be arbitrary within the limits set by the available imaging aperture and
by polarization effects that can arise due to the large aperture imaging beyond the
paraxial limit. In this work, we have used the projection to create a blue detuned
square lattice potentials with a periodicity a = 680nm. A major additional advan-
tage is the fact that the lattice geometry is not dependent on the wavelength [31],
apart from diffraction limits and chromatic aberrations in the lens for large wave-
length changes. This allows us to use the broadband light sources we have previously
described. It also enables us to dynamically change the wavelength of the lattice light
without changing the lattice geometry.

For the experiments in this work, we use two binary phase holograms to create
sinusoidal potentials along the = and y axes respectively (Fig. 4.5). The holograms
are illuminated with linearly polarized light, polarized perpendicular to the plane
of diffraction. The two light paths are combined with a polarizing beam splitter
cube. The far off-resonant lattice is created with light from a femtosecond laser, with

a spectral width of 3nm centred at 758nm. The lattice potential produced by the
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holograms is given by V (x,y) = V} (sin2 (kx) + sin® (k:y)), where the periodicity of
the lattice is given by a = 7/k = 640nm and V;, the depth of the potential, can reach
up to 50F,.

For imaging, we increase the lattice depth to 5500, (0.38mK) by illuminating the
lattice holograms with light from a continuous wave Ti:sapphire laser detuned 32GHz
to the blue of the D1 transition of 8’Rb, without changing the lattice geometry. This
pinning lattice is linearly polarized everywhere to avoid effective magnetic fields that
interfere with the polarization gradient cooling during imaging. This is achieved using
the proper choice of polarizations and by introducing frequency differences of at least
80MHz between lattice axes to time average the interference between them. Near
resonant light from the same source is used to simultaneously increase the lattice

depth in the axial direction to 3mK.

4.5.3 Fluorescence imaging of single atoms

The main use of the microscope set-up is the collection of fluorescence light and
high-resolution imaging of the atoms. With the atoms pinned in the deep lattice,
we illuminate the sample with red detuned near-resonant light in an optical molasses
configuration, which simultaneously provides sub-Doppler cooling [193, 194, 172]. The
molasses beams are detuned 80MHz to the red of the F' = 2 to F’ = 3 transition of
the D2 line,where F' and I’ denote the hyperfine manifold in the ground and excited
state, respectively. One beam enters from the y axis and is reflected off the trapping
surface at an angle of 15um and then retroreflected with perpendicular polarization

along the same path. This results in polarization and intensity gradients along the
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Figure 4.5: Diagram of the quantum gas microscope. The 2D atom sample (a) is
located a few microns below the lower surface of an in-vacuum hemispheric lens.
This lens serves to increase the numerical aperture of the objective lens outside the
vacuum (b). The atoms are illuminated from the side by the molasses beams (c)
and the scattered fluorescence light is collected by the objective and projected onto
a CCD (d). A 2D optical lattice is generated by projecting a periodic mask (e) onto
the atoms through the same objective via a beam splitter (f). The mask is a periodic
phase hologram, and a beam stop (g) blocks the residual zeroth order, leaving only
the first orders to form a sinusoidal potential.

y direction and the vertical. An additional beam enters along the x axis which
generates polarization gradient components along this axis by interference with the
retroreflected beam. In addition, to avoid cooling inefficiencies due to low polarization
gradients on some lattice sites, we frequency offset the molasses beams by 7kHz for
temporal averaging of the cooling pattern. The photons scattered by the optical
molasses are collected for fluorescence detection of the atoms. The solid angle of the

imaging system leads to a collection efficiency of 20%, such that we expect a total
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photon collection efficiency of ~ 10% including the quantum efficiency of the CCD
camera (Andor Ixon DU88Y). The effective pixel size in the object plane is 167nm.

Figure 4.6(a) shows a typical image obtained by loading the lattice with a very
dilute cloud, showing the response of individual atoms. The spot function of a single
atom can be directly obtained from such images. We measure a typical single atom
emission FWHM size as 570nm and 630nm along the x and y direction, respectively,
which is close to the theoretical minimum value of 520nm (Fig. 4.6(b)). This minimum
is given by the diffraction limit from the objective combined with the finite size of the
camera pixels and the expected extent of the atom’s on-site probability distribution
within the lattice site during the imaging process. As the same high-resolution optics
are used to generate both the lattice and the image of the atoms on the CCD camera,
the imaging system is very stable with respect to the lattice, which is important for
single-site addressing [195, 188]. The observed drifts in the 2D plane are very low,
less than 10% of the lattice spacing in one hour with shot to shot fluctuations of less
than 15% r.m.s.

Pair densities within multiply occupied lattice sites are very high due to the strong
confinement in the lattice. When resonantly illuminated, such pairs undergo light
assisted collisions and leave the trap within a time of the order of 100us, long before
they emit sufficient photons to be detected [48]. Therefore the remaining number of
atoms per site is equal to the parity of the original atom number before illumination,
as long as the initial occupation is small. For our molasses parameters, the collected
number of photons can be up to 2 x 10* per atom per second, and the exposure

times are typically between 200 and 1000ms, limited by the loss of single atoms from
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Figure 4.6: Imaging single atoms. (a) Field of view with sparse site occupation. (b)
Response of a single atom, derived from sparse images: shown are horizontal (filled
circles) and vertical (open circles) profiles through the centre of the image generated
by a single atom. The black line shows the expected Airy function for a perfect
imaging system with a NA = 0.8. The blue dashed line denotes the profile expected
from a single atom, taking into account only the finite width of the CCD pixels and
the finite extension of the probability distribution of the atom’s location. The data
are from the responses of 20 atoms in different locations within the field of view which
have been precisely superimposed by subpixel shifting before averaging.

the trap which reduces the detection fidelity. The 1/e lifetime is ~ 30 s, which is
consistent with loss due to collisions with hot atoms in the background gas.

Figure 4.7 shows an image obtained by loading a dense Bose-Einstein conden-
sate. The fast ramp-up of the pinning lattice within 1.5ms switches off tunnelling
and projects the superfluid state wavefunction onto Poisson distributed on-site occu-
pations with more than one atom per lattice site in the center of the trap. Owing to
the removal of pairs the occupation detected is lowered, typically 42%. Figure 4.8 is
a large field of view image, illustrating the capability to image tens of thousands of

atoms simultaneously over an area of more than 100pum without degradation of the
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Figure 4.7: Site-resolved imaging of single atoms on a 640nm period optical lattice,
loaded with a high density BoseEinstein condensate. Inset, magnified view of the
central section of the picture. The lattice structure and the discrete atoms are clearly
visible. Owing to light-assisted collisions and molecule formation on multiply occupied
sites during imaging, only empty and singly occupied sites can be seen in the image.

resolution. The images are analyzed by identifying the lattice geometry and fitting
point spread functions (obtained separately by analyzing images from sparsely filled
lattices) to each lattice point. As the background signal is weak and smooth due to
the 2D geometry, we thus obtain the total number of scattered photons per lattice
site as a simple way of determining the presence of an atom.

Figure 4.9 shows the histogram of photon counts for the central region of several
images with an average filling of 34%. For these pictures with long exposure times,
the fidelity of identifying atoms at a given lattice site is 98%, limited by the losses
occurring during the integration time. To verify that the atom distribution is pre-

served during imaging, we have recorded sequences of consecutive images spanning a
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Figure 4.8: Large field of view image of a thermal cloud in a 640nm spacing lattice.
The ability to identify individual atoms over the whole field of view shows that the
resolution is good over an area of more than 100um.

total detection period of several seconds, during which no significant hopping occurs.

4.6 Image analysis for extracting the density dis-

tribution

The data extracted from the images is a digital 0/1 matrix with entries corre-
sponding to whether we observe an atom on a site or not. In the section, we describe
the image processing algorithms we use to obtain such a matrix.

First, a sparse atom cloud image is used to extract the point spread function of
the imaging system (PSF). The geometry of the lattice is then extracted from such

an image. The lattice spacing is obtained and then the region of interest is fitted in
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Figure 4.9: Histogram showing the brightness distribution of lattice sites for an expo-
sure time of 1 s. The left peak corresponds to empty sites (background subtracted),
the right peak to those occupied by a single atom. The blue line denotes a fit to
the data using a double Gaussian function for each of the two peaks. a.u., arbitrary
units.

blocks of 10 by 10 lattice sites. The block centers are allowed to vary to extract any
distortions of the lattice pattern due to imaging aberration over the field of view. A
histogram of atom brightness is used to set a threshold that identifies the presence
or absence of an atom on a site. The information about the PSF, lattice geometry
and threshold obtained from these sparse images is then used to fit other images with
much higher lattice filling, only allowing for a single global offset in the lattice phase
determined by fitting atoms at the edges of the cloud.

During imaging, a small fraction of the atoms are lost due to background gas
collisions. If this occurs before they scatter enough photons to surpass the detection
threshold, they are not counted. For a 1s exposure, the mean fraction of such un-
counted atoms is 1.75 £ 0.02%, determined from 15 movies (30 frames, 0.5s exposure

per frame) of the atom population decay in the near-resonant lattice.
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In some cases, we are not interested in the in-situ lattice occupations, but rather
the total atom number in the cloud. The parity imaging does not allow extraction of
atom number from in-situ images. Instead, atom numbers are measured by switching
off the transverse confinement and letting the cloud expand in the 2D plane before
turning on the deep lattice used for fluorescence imaging. This ensures that the
probability of two atoms being on the same site is negligible, avoiding photo-assisted

losses for very accurate atom number determination.

4.7 Arbitrary potential landscapes with spatial light
modulators

In addition to imaging, we have also used the high NA optics to project light
patterns onto the cloud. This allows both manipulation of the atoms (Sec. 6.6) as
well as engineering the potential landscape with high spatial resolution (Sec. 5.2.4).
In particular, for landscape engineering, we illuminate a digital micromirror device
(DLP Discovery 4100, Texas Instruments) with incoherent light of spectral width
1nm, centered at 840nm. The light pattern after the DLP is imaged onto the atoms.
A block of 14 x 14 mirrors maps onto a single lattice site in the plane of the atoms,
allowing the creation of grayscale patterns, with the aperture of the objective provid-
ing Fourier filtering. An error diffusion algorithm [120] is used to convert the desired
grayscale image to a binary pattern. Potential corrections of either sign are possible
by operating the micromirror device with a bias light level produced by flattening the

profile of the Gaussian illumination beam.
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4.8 Site-resolved modulation spectroscopy

Lattice modulation spectroscopy involves sinusoidal modulation of the depth of an
optical lattice to probe the excitation spectrum of an atomic many-body system that
resides in the lattice (see for example [78, 166, 54, 169]). The modulation mainly
changes the tunneling J rather than the interaction U. The dependence of tunneling
on lattice depth can be approximated by

VY L,
J~ E, <E) e (4.6)

For a time dependent potential depth V' (t) = Vi 4 0V sinwt, tunneling also varies

sinusoidally for small §V: J(t) = Jy + 0J sinwt, with §.J given by

3 1
0J = JoV | — — . 4.7
’ <4vo WET) 4.7

If the many-body state we are studying with lattice modulation is, for example, a
Mott insulator, the tunneling modulation above provides a matrix element connecting
the lowest Hubbard band containing no excitations to the first band with a single
doublon/hole excitation. Deep in the Mott regime, the excitation is induced by
modulating at w = U/h. More usefully, modulation spectroscopy can measure the
many-body energy gap all the way across a phase transition.

In most experiments to date, the excitations introduced by modulation spec-
troscopy are probed as a broadening of the diffraction peaks for states with global
coherence such as superfluids, or by adiabatically transferring the system to such a

state after the modulation if the initial state is different (e.g. a Mott state or Bose
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glass). Site resolved imaging allows us to directly study the excitation spectrum of
states with density or spin spatial ordering. In addition, spectrum features obtained
from in-situ modulation spectroscopy can be much narrower than traditional tech-
niques by focusing on a small part of the cloud to avoid averaging over large scale
potential inhomogeneities.

As an example, we show a spectrum (Fig. 4.10(a)) obtained by modulation spec-
troscopy of a Mott insulator with one atom per site in a linear gradient characterized
by a potential difference E between neighbouring lattice sites. Excitations are intro-
duced into the system at frequencies U + E and U — E corresponding to creating
single excitations by hopping up or down the gradient. The excitations are observed
as a reduction in the averaged probability of observing an atom on a site during the
imaging (p.qq), because the doublons and holes produced are both not detected by
parity imaging.

Such spectra were used in calibrating the gradients applied in the experiments
of Chapter 6. In a harmonic trap, the local gradient E varies across the cloud,
which usually leads to broadening the peaks to several hundred Hertz for traditional
modulation spectroscopy (e.g. [78]). In this case, by doing the spectroscopy on a few
sites, the features observed are much narrower, with residual power broadening.

Figure 4.10(b) shows data illustrating the precision measurement capability of
in-situ modulation spectroscopy. The three modulation spectra shown were all taken
using atoms in the same region at the center of the trap. For the different spectra,
the atom number was changed to have shells with 1, 2 or 3 atoms per site in that

region. In this case, the resonances curiously occur at different center frequencies in
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Figure 4.10: Site-resolved modulation spectroscopy. (a) Modulation spectroscopy in
a tilted lattice. The occupation probability, plotted versus the modulation frequency,
for 16 £, longitudinal lattice modulated by £23%, corresponding to a Bose-enhanced
resonant tunneling rate of 2r x 4 Hz. Because the experiment is performed in a
lattice tilted by E per site, the peak at zero tilt which appears at the interaction
energy U is split out into two peaks, one corresponding to an atom tunneling up the
tilt at an energy cost of U 4+ F, and one to tunneling down the tilt a cost of U — F.
Fitting these peaks allows us to extract both U and E. The peak width arises from
a combination of power broadening (approximately 27 x 14 Hz, complicated by Rabi
hopping), and residual lattice disorder. (b) Three-body interaction shifts observed in
the modulation spectra in a tilted lattice. The peaks for n = 1,2, 3 are at 307 Hz,
276 Hz and 256 Hz respectively.

the different shells. One expects that an excitation in a shell with n atoms per site
produces n+ 1 and n — 1 atoms on two lattice sites. The final state has an energy of
1U(n+1)n+1U(n—1)(n—2), while the initial state has an energy Un(n—1) for the two
sites of interest. In this simple picture, the energy difference is U in any shell. There
are many corrections to this picture that contribute to the shift of the resonances
in the different shells, but the dominant one is multi-orbital effects [191, 100]. For
example, when three atoms are on the same site, the presence of interactions broadens

their Wannier wavefunctions which reduces their pairwise interaction energy relative
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to having just two atoms on the same site. This can be understood in terms of virtual
transitions to higher bands which are not included in the single-band Hubbard model.
The corrections to the onsite energy can be written as

E, = %Ugn(n —1)+ éUgn(n —1(n—-2)+ 2—14U4n(n —1(n—-2)(n—3)+.. (4.8)

where U, is an effective n-body interaction. To first order, this predicts that the
second and third Mott shells would shift relative to the first by Uz and 2Us, with

U; =~ —20Hz for our parameters.

4.9 Noise correlation measurements

Phases with density or spin ordering can be detected in time of flight by measuring
higher order correlations of the momentum distribution [2]. This technique has been
used to detect pair correlations between atoms in a Fermi gas [76] as well as bosonic
bunching [60] and fermionic antibunching [157] in a lattice, to study the superfluid
to Mott transition in 2D [179] and has been suggested as way to detect antiferro-
magnetic ordering in a lattice [32]. In principle, resolved-site measurements make
noise-correlations measurements obsolete, but the parity detection in our experiment
has made the use of noise correlations necessary in some cases to detect density wave
ordering where the parity is constant throughout the density wave (Sec. 6.2.2).

We explain noise correlations in the context of the experiments described in Chap-
ter 6 and highlight the advantage of high resolution imaging in obtaining noise corre-

lation data. In those experiments, a 1D density wave was prepared with alternating
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0 and 2 occupancy in a lattice. A 1D expansion was performed by allowing the atoms
to expand in the tubes while they remained confined in the other two directions. The
atoms were pinned after the time of flight and imaged in fluorescence. The noise

correlation signal is given by a normalized density-density correlation

(n(z)n(x + d))dx

g
D= Tt in(e + d)da

(4.9)

where n(z) is the density at position z after time of flight and the brackets denote
averaging over many images. This signal is 1 for uncorrelated atoms. After obtaining
the occupation 0/1 vector of the 1D expanded system, we extract the noise correlation
signal as described in Ref. [60]. We compute autocorrelation function by Fourier-
transforming the individual vectors, taking the absolute square to obtain the power
spectral density and Fourier-transforming back. We then average the autocorrelation
over realizations to obtain the numerator of Eq. 4.9. Finally, we then compute the
denominator from the autocorrelation of the average of all the vectors.

With bosons, the noise correlation experiment yields a signal that is enhanced
above 1 because of a two-particle wavefunction interference. Each pair of atoms can
be detected by a pair of detectors in two ways, which interfere constructively for
bosons leading to bunching. The “detectors” in this case are the lattice sites of the
pinning lattice in which the atoms are imaged. The signal directly probes correlators

T

of the form (alal a;a,) where al (ay) creates (destroys) a boson on site k. In a Mott

state with occupany n; on the kth site, this correlator evalutes to

<aJIrgaInalan> = nknm(skl(smn + nknméknélm (410)
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where the two terms correspond to the two detection paths.

The correlation signal can be shown to scale as

C(d)— 1~ % (i)D (4.11)

where NN is the number of atoms, D is the number of dimensions in which the mea-
surement is done, o is the size of the noise correlation bins, usually limited by the
point spread function of the imaging system and [ = htg;% Here troF is the time
of flight and a is the wavelength of the density wave. With our technique, the atom
number can be precisely obtained after expansion with single atom precision, allowing
post-selection against atom number fluctuations. More importantly, ¢ is a single site
in our system, greatly enhancing the noise correlation signal and reducing the number
of shots required to obtain it. Previous experiments have observed C'(d) —1 are below

the 1073 level [60]. The signals we observe in Sec. 6.2.2 are ~ 500 times larger.
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Publications based on the work described in this chapter:

“Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom
Level”, W. Bakr, A. Peng, M. Tai, R. Ma, J. Simon, J. Gillen, S. Foelling,
L. Pollet and M. Greiner, Science 329, 547-550 (2010)

Microscopic measurements can reveal properties of complex systems that are not
accessible through statistical ensemble measurements. Previous ultracold quantum
gas experiments have studied the superfluid to Mott transition in an optical lattice
using bulk measurements [78, 101, 165] that probe global properties such as coherence
and compressibility, or local measurements that are coarse-grained over several lattice
sites [66]. We present the first single atom-single site study of this quantum phase

transition [56]. The microscopic measurements provide direct access to the evolution

65
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of the onsite number distribution across the phase transition, and allow us to study
local adiabaticity timescales for the formation of the Mott insulator. In addition,
we identify particularly low entropy domains in the Mott insulator and obtain high

contrast images of the shell structure.

5.1 Number squeezing across the phase transition

In the weakly interacting superfluid regime, the many-body wavefunction factor-
izes into a product of states with well-defined phase on each lattice site, known as
coherent states [74], with Poissonian number fluctuations. A coherent state on the
Jjth site is an eigenvector of the annihilation operator on that site: a;|o;) = ajla;),

where the classical field o is given by

Oéj = \/ﬁj6i¢j. (51)

Here 7; is the mean atom number of the site and ¢; is the macroscopic phase. The

state can be expressed in a basis of Fock states as

) = e 2 30 ) (52)

from which the Poissonian atom number distribution immediately follows.
As the strength of the interaction increases, the number distribution is narrowed,
resulting in a fixed atom number state on each site deep in the Mott insulator regime.

This narrowing of the distribution is known as number squeezing [37], in analogy to
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squeezing of the photon field encountered in quantum optics [124]. Number squeezing
was previously studied indirectly in experiments [79, 69, 101], with the measurements
averaged over several shells of superfluid and Mott insulating domains in the inho-

mogeneous system, complicating quantitative interpretation.

5.1.1 Gutzwiller prediction for number squeezing

A prediction for the dependence of the onsite atom number distribution on the
tuning parameter U/J can be obtained in the weakly interacting regime using a
Gutzwiller approach [156, 112, 171]. The Gutzwiller ansatz is that the many-body

wavefunction can be written as a product of wavefunctions on individual lattice sites

=TI (5.3

thus ignoring any possible correlations between lattice sites. The onsite wavefunctions

are expanded in the atom number basis
i) = fPIn) (5.4)

where the amplitudes ffli) for having n bosons on the ith lattice site are constrained

by the normalization condition 2 |f,|*> = 1. The expectation value of the Bose-

Hubbard Hamiltonian in the Gutzwiller wavefunction (eq. 5.3) is given by

(H) =—Jz Zf foriVn+1

Z|fn|nn—1 —u) |fal’n (55)
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The number distribution is obtained by truncating f,, for atom numbers much larger
than the mean atom number on a site and then minimizing the energy with the
remaining amplitudes. Ref. [156] makes a further assumption that the amplitudes

can be assumed to take a particular form

=n/2
n
fn = gn(n—l)/2 5.6
i (5.6)
where g is a variational “squeezing parameter”, with the claim that any function that
suppresses multiple occupancy for progressively higher atom numbers should produce
similar results. Under this assumption and in the weakly interacting regime, the

result obtained for the squeezing parameter g is

1
1+5%5

g~ (5.7)

Figure 5.1(a) shows the theoretically calculated squeezing parameter as a function
of U/J corresponding to various mean occupations in the superfluid phase, measured
in atoms per lattice sites. The squeezing parameter starts at unity in the superfluid
state since that corresponds to a coherent state and goes down as the distribution
gets narrowed. At a given U/J, the squeezing parameter is higher for (n) = 2 than
for (n) = 1 because quantum fluctuations are stronger in that case due to bosonic

enhancement.
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Figure 5.1: Gutzwiller prediction for atom number squeezing in a homogeneous sys-
tem. (a) Squeezing parameter g and (b) probability of odd occupation on a lattice
site plotted vs. U/J for various initial mean occupations in the superfluid. If the
initial mean occupation in the superfluid is one (two) atoms per site with Poissonian
fluctuations, the Mott insulating state at large U/.J has exactly one (two) atoms per
site with no fluctuations. Therefore, the p.44 is one (zero).

5.1.2 Parity detection of number squeezing

Experimentally, the onsite number distribution can be probed by repeatedly prepar-
ing a sample in the lattice under identical conditions and measuring the atom number
on that site. As a result of the measurement process, the many-body wavefunction
is projected onto number states on each lattice site. In our experiments, we detect
the parity of the atom number on a site (as described in Sec. 4.5.3) and repeated

measurements can be used to deduce the probability of the site being oddly occupied,

podd'
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For a coherent state on a lattice site with mean atom number 7, p,, is given by

" 1 —2n
Posa = Y € —=50-e). (5.8)

n odd

This quantity is always less than 1/2; and therefore p.qq4 > 1/2 is an indication of a
non-Poissonian atom number distribution. On the other hand, in a Mott-insulating
region in the zero temperature and zero tunneling limit, p.q is 1 (0) for shells with
an odd (even) atom number per site. Figure 5.1(b) shows p,q as a function of U/J
for various initial occupations in the superfluid based on the Gutzwiller calculation

described in the previous section.

5.1.3 Squeezing dynamics in the mean-field

Although the equilibrium properties of the Bose-Hubbard model are well under-
stood, a theoretical understanding of the dynamics of the quantum phase transition,
especially for a non-adiabatic change of the parameters, is still an active area of in-
vestigation. Studies of quenches from the superfluid to the insulator [109, 41] and
vice versa have predicted interesting dynamics, including, in the latter case, order
parameter oscillations due to the excitation of a gapped mode in the superfluid [1]
and formation of topological defects realizing a quantum version of the Kibble-Zurek
mechanism [46].

In this section, we will focus on the dynamics of the atom number distribution for
non-adiabatic changes of the tuning parameter U/J. The calculation is done using
a time-dependent Gutzwiller wavefunction truncated for onsite atom numbers larger

than two [178]. The state of the system is assumed to be close to a Mott insulator
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with one atom per site so that the probabilities for having zero or two atoms per
site are small and approximately the same by symmetry. The properly normalized

wavefunction on a site is then written as

|0) + |2

W) = e*/2gin 9% + % cos O|1) (5.9)

where 6 and ¢ represent the remaining amplitude and phase degrees of freedom. The
symmetric choice of phase between |0) and |2) lowers the energy. The mean-field

Bose-Hubbard Hamiltonian on the ith lattice site is

H,=-Jz (al(a]) + <a})ai> + %Uni (n; —1). (5.10)

Taking the expectation value of the annihilation operator a in the wavefunction de-

scribed by Eq. 5.9, we obtain

(a) = % cos 0 sin 0 (eid’ + \/§e_i¢> (5.11)

To find the values of the variational parameters that minimize the ground state energy,
we minimize the expectation value of the self-consistent Hamiltonian in the variational

wavefunction, which leads to ¢ = 0 and
Jz (3 + 2\@) cos26 = U. (5.12)

The mean field transition point, defined by the interaction to tunneling ratio where
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Figure 5.2: Atom number squeezing dynamics. The time evolution of p,4, is shown for
(a) exponential ramps of U/.J with various time constants 7 and (b) sudden quenches
from J = 2J, to different lower values of the tunneling. Here J, is the tunneling at
the critical point. All calculations are done in the mean-field.

the onsite distribution is non-zero only for unit occupancy is given by
U/zJ.=3+2V2. (5.13)

We obtain the dynamics of the number distribution by solving the time-dependent
Schroedinger equation id|¥)/dt = H|V) using the mean-field Hamiltonian above.

This leads to coupled differential equations for # and ¢

% = —zJ(3—|—2\/§cosqz5) cos20 +U (5.14)

do sin 20

sin ¢ (5.15)

which have the same stationary solution as Eq. 5.12. The probability of having one
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atom on a lattice site (equivalent to p,q in this case) is cos® 6. Figure 5.2(a) shows
a plot of the time evolution of p.4 for an exponential ramp of J at fixed U while
figure 5.2(b) shows oscillations of p,q resulting from a sudden quench that reduces

the tunneling. The latter case can be obtained by jumping the lattice depth.

5.1.4 Mott insulators at finite temperature

At zero temperature, onsite atom number fluctuations arise from coherent quan-
tum fluctuations that lead to the squeezed number distributions described in Sec. 5.1.1.
However, at finite temperature, there are also thermal fluctuations. To elucidate the
difference between the two kinds of fluctuations, we will focus on a Mott insulator
with unit mean onsite occupation. At zero temperature and for small tunneling, we

can write a perturbative many-body wavefunction
10) ~ [ W) s + = Za*a]mf (5.16)

where |W),,; is a Mott state with one atom on every site. The tunneling creates an
admixture of localized doublon-hole pairs. These have been shown [70] to contribute
to residual coherence in the Mott insulator that manifests itself as a finite visibility
of the interference pattern observed after free expansion. It is important to note that
in this limit, the doublon-hole pairs are localized in the sense that an observation of
a missing atom on a lattice site means that an extra atom has to appear on one of
the neighbouring lattice sites.

Thermal fluctuations also lead to the appearance of doublons and holes on top
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of an n = 1 Mott insulator, but these are free to move around and are not paired.
We can obtain the expected number distribution arising from thermal fluctuations by
focusing on a Mott insulator in the atomic limit (J = 0) at temperature 7. In this
limit, the energy per lattice site is given by £ = %U n(n — 1) and the grand canonical

partition function truncated for onsite occupations above two is

Z =1+ et 4 PU) (5.17)

where p is the chemical potential and § = 1/kgT, with kp denoting Boltzmann’s
constant. From this, we immediately obtain p..q = €’#/Z. Near the tip of the Mott
lobe where p &~ U/2, the defect ratio d in the Mott insulator, is d = 2/Z, and can be
used as an accurate thermometer down to zero temperature. Figure 5.3(a) is a plot
Poaa V8. T/U which shows that Mott insulators with less that 1% defect ratios can be
obtained for temperatures below 7'/U = 0.08.

In many cases, entropy is a more useful concept than temperature when dealing
with ultracold gases because most of the manipulations of the gas are isentropic
rather than isothermal. For example, loading into an optical lattice, in the ideal case,
preserves the entropy of the bulk gas while the temperature changes. The entropy
S of the Mott insulator in the atomic limit can be obtained as the temperature
derivative of the free energy S/kp = Or (T'In Z) and p.44 is plotted vs. the entropy
in figure 5.3(b).

The effect of introducing tunneling back to the finite temperature Mott insulator
can be considered perturbatively. The results of such a calculation [67] show that

the leading order effect is to add to the free energy terms describing a Bose gas of
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Figure 5.3: Mott insulators at finite temperature in the zero tunneling limit. The
fidelity of the Mott insulator, quantified by p,u4, is shown vs. (a) the temperature
T/U and (b) the entropy per particle.

quasiparticles and quasiholes that are mobile through the lattice. For two-dimensional
lattices with a depth of about 16F, corresponding to the experimental regime we

investigate, these effects are negligible.

5.2 Microscopic study of the phase transition

We now proceed to describe the results of experiments in which we have used
the quantum gas microscope to probe local phenomena in the superfluid to Mott
insulator transition that have been described in the previous section. Our experiments
start with a two-dimensional 8’Rb Bose-Einstein condensate of a few thousand atoms
confined in a single well of a standing wave, with a harmonic oscillator length of
130nm. The condensate resides 9um from an in-vacuum lens that is part of an
imaging system with a resolution of ~ 600nm. This high resolution system is used

to project a square lattice potential onto the pancake cloud with a periodicity of
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a = 680nm. The lattice depth is increased linearly to 0.4FE, in 50ms, and from
there ramped exponentially to its final value (16F, for most experiments) with a
time constant of 81ms. In a homogeneous system in two dimensions, the transition
to a Mott insulator with one atom per site occurs at a ratio of interaction energy to
tunneling of U/J = 16.7 [107, 179, 38], corresponding to a lattice depth of 12.2F,.
During the ramp, the initial transverse confinement of 9.5Hz is increased such that
the cloud size remains approximately constant, compensating for the increasing inter-
atomic interaction and deconfinement due to the blue lattice. This allows for faster
ramps while maintaining adiabaticity, because the density redistribution during the
lattice ramp is minimized. After preparing the many-body state, we image the atoms
by increasing the lattice depth several hundred-fold, and then illuminate the atoms
with an optical molasses that serves to localize the atoms while fluorescence photons

are collected by the high resolution optics.

5.2.1 Single-site imaging of atom number fluctuations

As discussed previously, the presence of light-assisted collisions means that the
imaged atom number is nmod(2) where n is the projected atom number before the
collisions. Figure 5.4 shows fluorescence images in a region of the cloud as the final
depth of the lattice is increased. The initial superfluid density is chosen to obtain an
insulator with two shells on the Mott side of the transition, and the region shown is
in the outer shell containing one atom per site. For high filling fractions, the lattice
sites in the images are barely resolved, but the known geometry of the lattice and

imaging system point spread function obtained from images at sparser fillings allow
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Figure 5.4: Single-site imaging of atom number fluctuations across the superfluid to
Mott insulator transition. Images within each column are taken at the same final
2D lattice depth of 6F, (A), 10E, (B), 12E, (C), and 16E, (D). Top row: In-situ
fluorescence images from a region of 10 by 8 lattice sites within the n = 1 Mott
shell that forms in a deep lattice. In the superfluid regime [(A) and (B)], sites can
be occupied with odd or even atom numbers, which appear as full or empty sites,
respectively, in the images. In the Mott insulator, occupancies other than 1 are highly
suppressed (D). Middle row: results of the atom detection algorithm for images in the
top row. Solid and open circles indicate the presence and absence, respectively, of an
atom on a site. Bottom row: Time-of-flight fluorescence images after 8-ms expansion
of the cloud in the 2D plane as a result of nonadiabatically turning off the lattice and
the transverse confinement (averaged over five shots and binned over 5 by 5 lattice
sites).

reliable extraction of site occupations.

We determine p,qq for each site using 24 images at each final lattice depth. The
transverse confining potential varies slowly compared to the lattice spacing and the
system is to good approximation locally homogeneous. We make use of this to improve
the error in our determination of p.qq, by averaging over a group of lattice sites, in
this case 51 (30) sites for regions in the first (second) shell (Fig. 5.5). In the n =1
shell, we detect an atom on a site with probability 94.9 £ 0.7% at a lattice depth of

16 F,.. We measure the lifetime of the gas in the imaging lattice and determine that
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1.75+0.02% of the occupied sites are detected as unoccupied due to atoms lost during
the imaging exposure time of 1s because of background gas collisions. We correct for

this effect in the given average occupation numbers and errorbars.

- | | . —————0.00
40.10
0.8}
40.20
0.6} .
_ (&)
Qg 40.25 _§
| e~ TU=005 S
—— T/U=0.15
................ T/U=0.20 0.20
) A S
n=2 shell 010
0.0 ' ' | T
0 - 45 0.00

un

Figure 5.5: Measured value of p,q, versus the interaction to-tunneling ratio U/J.
Data sets, with 1s error bars, are shown for regions that form part of the n = 1
(squares) and n = 2 (circles) Mott shells in a deep lattice. The lines are based on
finite-temperature Monte Carlo simulations in a homogeneous system at constant
temperature-to-interaction ratio (T/U) of 0.20 (dotted red line), 0.15 (solid black
line), and 0.05 (dashed blue line). The axis on the right is the corresponding odd-
even variance given by poaq(1 — Poda)-

5.2.2 Thermometry down to zero temperature

Measuring the defect density in the Mott insulator provides sensitive local ther-
mometry deep in the Mott regime. Thermometry in the Mott state has been a
long-standing experimental challenge [189, 184] and has acquired particular signifi-

cance as experiments approach the regime of quantum magnetism [49, 3, 183] where
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the temperature scale should be on the order of the superexchange interaction energy.
We directly image excitations of the n = 1 Mott insulator, holes and doublons, as
they both appear as missing atoms in the images. Similarly, for Mott insulators with
higher fillings n, sites with excitations (n + 1,n — 1) can be detected through their
opposite parity signal. For finite tunneling rate J much smaller than the interac-
tion energy U, the admixture fraction of coherent hole-doublon pairs excitations is
~ (J/U)?, whereas any other excitations are due to incoherent thermal fluctuations
and are suppressed by a Boltzmann factor e=V/7

The theory curves presented in Figure 5.5 are the predicted p.qq in the two shells
for different values of T'/U. The curves are obtained using a quantum Monte-Carlo
“worm” algorithm [151, 149], and the average temperature extracted using the data
points at the three highest U/J ratios is T'/U ~ 0.16+0.03. At the transition point for
n = 1, this corresponds to a temperature of 1.8nK. Assuming this value of T'/U to be
the overall temperature, the thin layer between the Mott shells should be superfluid,

and the transition to a normal gas is expected around a critical temperature of zJ =

2.8nK, where z is the number of nearest neighbours in the lattice [67].

5.2.3 Measurement of local adiabaticity timescales

In a second series of experiments, we use on-site number statistics to probe the
adiabaticity timescale for the transition, focusing on the local dynamics responsible
for narrowing the number distribution. We start by increasing the lattice depth
adiabatically to 11FE,., still in the superfluid regime, using the same ramp described

previously. Next the depth is ramped linearly to 16 E, where, for an adiabatic ramp,
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Figure 5.6: Dynamics of on-site number statistics for a fast ramp from the superfluid
regime to the Mott regime. (a) p.q4 at the end of the ramp versus ramp time is shown
in the n = 1 (squares) and n = 2 (circles) shells, averaged over 19 data sets with 1s
error bars. Red lines are exponential fits. Inset shows the two-part ramp used in this
experiment. The first part is a fixed adiabatic exponential ramp (¢ = 81 ms) and the
second is a linear ramp starting at 11FE, and ending at 16F,. The duration of the
second ramp is varied in the experiment. (b) Theoretical prediction for the dynamics
in the n = 1 shell using the mean-field model we have developed, showing a similar

characteristic timescale.
a Mott insulator should form. The ramp time is varied from 0.2ms to 20ms, and p.q4
is measured in the first and second shells as before (Fig. 5.6(a)); we find that the
data fits well to exponential curves that asymptote to the value of p.4q obtained in
the adiabatic case. The fitted time constant in the first (second) shell is 3.5 & 0.5ms
(3.9 £ 1.3ms).

Compared to the critical value of the tunneling time h/J. = 68ms for the first
shell, the observed dynamics are fast, but we can reproduce the observed timescale
using the mean-field model developed in Sec. 5.1.3, as shown in Figure 5.6(b).

Although the local number statistics change on a fast timescale, entropy redis-
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tribution in the inhomogeneous potential should occur on a much slower timescale.
Because superfluid and normal domains have a larger specific heat capacity than Mott
domains, in an inhomogeneous system, entropy is expelled from the Mott domains
and accumulates in the transition regions after crossing the phase transition if the sys-
tem is in thermal equilibrium [148]. It was found, however, that in bulk Mott regions
the insulating behavior makes entropy transport difficult, and global thermalization
is slow on experimental timescales [91]. In our system, optical potential corrugations
produce sizable potential gradients in some regions, leading to a heterostructure of
almost one-dimensional Mott domains, about 1-2 lattice sites thick, surrounded by
transition layers (Fig. 5.7). We find remarkably low defect densities and sharp tran-
sitions between superfluid and Mott states in these regions. The measured defect
probability per site in the domain shown is 0.8 +0.8%. In these microscopic domains,
each site of a Mott domain is in contact with a superfluid region. Such a configuration
is likely to lead to fast thermalization, which would explain the low defect density
we observe. This suggests that the lowest entropies in a Mott insulator might be
obtained under conditions where the chemical potential is engineered so as to obtain

alternating stripes (2D) or layers (3D) of insulating and superfluid regions [150, 38].

5.2.4 Imaging the Mott insulator shell structure

While we have mostly focused on microscopy of Mott insulators, the ability to take
high resolution images combined with the parity imaging allows us to obtain atom-
by-atom pictures of the concentric shell structure. Previously, the shell structure was

imaged through tomographic [61], spectroscopic [35], and in-situ imaging techniques,
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Figure 5.7: Low-entropy Mott domains observed in a steep potential gradient. (A)
Single-shot in-situ image of a Mott insulator in a 16 F, deep lattice with 25 Hz trans-
verse confinement. The ring is an n = 1 insulator enclosing an n = 2 region. (B)
Average p,qq Over 24 images. Each pixel corresponds to a single lattice site. The red
rectangle encloses a region containing a Mott insulator with n = 1, a few lattice sites
wide. (C) Column average of p,q4, over the sites within the red rectangle in (B), with
1s error bars.

coarse-grained over several lattice sites [66]. In Figure 5.8A to D, the formation of the
various shells, up to the fourth, is shown as the atom number in the trap is increased.
Slowly varying optical potential disorder causes deviation from circular symmetry in
the shells. The spatial pattern of the disorder is static in time and for a lattice depth
of 22F,, has an RMS gradient of (0.13 £ 0.01)U per lattice site and a characteristic
length scale of 10 lattice sites. The contour lines of the potential are directly extracted
from the shell structure boundaries in the Mott regime. Different contour lines are
obtained by varying the atom number. In Fig. 5.8E and F, we have compensated this
disorder by projecting a light pattern generated using a digital micromirror device
through the objective (Sec. 4.7), resulting in a nearly circular shell structure. In

later experiments, we have used further spatial filtering the lattice beams before the

objective to eliminate long wavelength disorder, and the improved shell images are
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Figure 5.8: Single-site imaging of the shell structure in a Mott insulator. (A to D)
The images show p.qq on each site determined by averaging 20 analyzed fluorescence
images. The lattice depth is 22F,. and the transverse confinement is 45 Hz. As the
atom number is increased, the number of shells in the insulator increases from one
to four. The value of p.4q for odd-numbered shells is close to 1; for even-numbered
shells, it is close to 0. The atom numbers, determined by in-situ imaging of clouds
expanded in the plane, are 1204+10 (A), 460£20 (B), 870£40 (C), and 1350£70 (D).
(E and F) Long-wavelength disorder can be corrected by projecting an appropriate
compensation light pattern onto the atoms, resulting in nearly circular shells. (E)
Poaa (average of 20 analyzed images); (F) a single-shot raw image (arbitrary units).

shown in Figure 5.9.

5.2.5 Density correlations in the Mott insulator

At finite tunneling, a Mott state with one atom per site has tunneling induced
quantum fluctuations where an atom hops virtually to a neighbouring site and back.

This fluctuation is admixed at order J/U for each pair of neighbouring sites and if
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Figure 5.9: Averaged images of the shell structure for increasing atom number. In
these images, further spatial filtering of the lattice beams before the high resolution
objective reduced long-wavelength disorder.

we image the insulator, we should be able to observe the fluctuation with probability
~ (J/U)? for any pair.

We observe the fluctuation as a pair of neighbouring dark sites. Of course, ther-
mal fluctuations also produce defects, but the locations of the defects are uncorre-
lated. Therefore if the defect probability is d, we can investigate whether we observe
neighbouring defects with a probability that is higher that what we would expect

for statistically independent thermal defects (d?). This excess is due to quantum
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fluctuations.
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Figure 5.10: Nearest neighbour density correlations in the Mott insulator. The data
points indicate how much more likely it is to observe neighbouring pairs with even oc-
cupation beyond what is expected if the even occupations appeared in a statistically
independent manner. The enhancement in the Mott regime is due to doublon-hole
virtual excitations. The theoretical curves are based on quantum Monte-Carlo simu-
lations at different temperatures 7'/U between 0.09 and 0.15.

We define a correlation function g, that captures this concept: gy = pee/p?, where
Pee 1S the probability of observing neighbouring defects on any pair and p. is the
probability of a defect on a site. gy is expected to be unity in the superfluid limit
(shallow lattice) since a scalar field cannot have density-density correlations and is
also unity for an insulator in a very deep lattice because quantum fluctuations vanish
in the zero-tunneling limit, leaving only the frozen thermal defects. In between those
two limits, go should exceed unity, with a maximum value that depends sensitively

on the temperature of the cloud.
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Figure 5.10 shows ¢, obtained from the center of an n = 1 Mott shell, with
quantum Monte-Carlo theory for various temperatures. The data agrees with T'/U =
0.11. The error bars for data taken at high depths are large because very few events

with neighbouring dark sites are recorded.
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Magnetic quantum phase

transition in a spin chain

Publications based on the work described in this chapter:

“Quantum Simulation of an Antiferromagnetic Spin Chain in an Optical
Lattice”, J. Simon, W. Bakr, R. Ma, M. Tai, P. Preiss and M. Greiner,
Nature 472, 307-312 (2011)

Understanding exotic forms of magnetism in quantum mechanical systems is a
central goal of modern condensed matter physics. A quantum magnet is made of
interacting quantum mechanical spins that can be in a superposition of classical
many-body states, leading to a Hilbert space of possible states that is exponentially
large in the system size [161]. In this chapter, we describe experiments that use our
ultracold atom system to simulate a quantum Ising spin chain in the presence of both
longitudinal and transverse magnetic fields in the neighbourhood of a multicritical

point. We demonstrate a reversible transition between a paramagnetic phase and an

87
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antiferromagnetic phase and use in-situ site-resolved imaging and noise correlation
measurements to study domain formation.

Quantum magnetic transitions have been previously explored in other cold atom
systems. The Stoner model of itinerant ferromagnetism has been studied in a degen-
erate Fermi gas [99] and highly connected quantum spin networks have been inves-
tigated with short ion chains [103]. Polar molecules [133] and Rydberg atoms [87]
have been the subject of preliminary investigations both experimentally and theoret-
ically [187, 33, 123] as alternatives to ground-state atoms with stronger, longer-range
interactions. Magnetically ordered states have been artificially prepared through pat-
terned loading [58, 116, 188, 175] and in double-well [59] experiments.

Traditionally, the spins in an optical lattice have been encoded in a ground state
hyperfine degree of freedom of the atoms [49]. Direct interactions between atoms
on neighbouring lattice sites due to the overlap of Wannier functions are extremely
weak (sub-Hertz level). A somewhat stronger interaction (several Hertz level) is
achievable through superexchange, which involves virtual tunneling of an atom to a
neighbouring site where the interaction occurs before it tunnels back. The timescale
for such a process is t2/U, where t is the tunneling rate and U is the interaction. Such
interactions have been observed in double well systems [183], but many-body ordering
through superexchange interactions has not been achieved to date. We follow a
different route to achieve stronger interactions. We simulate a 1D chain of interacting
Ising spins by mapping doublon-hole excitations of a Mott insulator [78, 97, 56| of
spinless bosons in a tilted 1D optical lattice [163] onto a pseudo-spin degree of freedom.

This approach has a dynamical timescale set by the tunneling rate ¢, which is about
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ten times larger than superexchange interactions in our system.

6.1 Simulating an antiferromagnetic Ising chain in

an optical lattice

In the experiments of Greiner et al. [78], a gradient was applied to a Mott insulator
in a lattice to study its insulating properties. A resonant response was found near
the interaction energy U. Sachdev et al. analyzed the experiments [163] using a one-
dimensional model, ignoring the presence of any harmonic trapping potentials. They
showed that under the influence of such field gradients, the dynamics of a 1D Mott
insulator map onto a quantum Ising Hamiltonian with transverse and longitudinal
fields, in the neighbourhood of a multicritical point. We describe this model by first
explaining the underlying Bose-Hubbard dynamics, and then turning to the mapping
onto the effective spin model.

We will work deep in the Mott insulator regime (U >> t) where it is energetically
forbidden for the atoms to tunnel as long as the tilt per lattice site, E, differs from
the onsite atom-atom interaction U. Hence, the system remains in a state with one
atom per lattice site for £ < U (Fig. 6.1(a)). As the tilt approaches the interaction
strength (E = U), each atom is free to tunnel onto its neighbour, so long as its
neighbour has not itself tunneled (Fig. 6.1(b)). This nearest-neighbour constraint is
the source of the effective spin-spin interaction. If the tilt E is increased sufficiently
slowly through the transition so as to keep the system near its many-body ground

state, density wave ordering results (Fig 6.1(c)).
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Figure 6.1: Tilted Hubbard model and mapping to spin model. (a) Middle row: When
a Mott insulator is placed in a tilted lattice, it remains in a state with one atom per
lattice site until the tilt per site £ reaches the onsite interaction energy U. (b) At this
point the energy cost A = E — U to move to the neighbouring site vanishes, and the
atoms begin to tunnel resonantly to reduce their energy. An atom, however, can only
tunnel to a neighbouring site if the atom on that site has not itself tunneled away.
If no atom is present on the neighbouring site, the tunneling process is suppressed
by the energy gap U. This creates a strong constraint and leads to the formation of
entangled states. (c) As the tilt is increased further, the system transitions into a
doubly degenerate staggered phase. (d) This system may be mapped onto a model of
interacting spin-1/2 particles, where the two spin states correspond to the two possible
positions of each atom. In the spin model, the aforementioned constraint forbids
adjacent down spins, realizing a spin-spin interaction. The initial Mott insulator now
corresponds to a PM phase with all spins aligned upwards to a large magnetic field
(see top row), the state at resonant tilt corresponds to a non-trivial (critical) spin
configuration, and staggered ordering at even larger tilt corresponds to an AF phase.
Bottom row: The phases can be detected by single lattice site imaging. Because
the imaging system is sensitive only to the parity of the atom number, PM domains
appear bright (a), and AF domains appear dark (c).

Sachdev et al. describe the tilted-lattice physics in an effective model with dipolar
(doublon-hole) excitations, but point out that it also maps to a spin model since each
atom has only two possible positions. Figure 6.1(d) shows the spin configurations
that correspond to the various atom distributions in the optical lattice. We can
define a spin on each link between neighbouring lattice sites, with the spin pointing

up if the atom on the left remains there, and pointing down if that atom moves
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one site down the gradient. The spin can of course exist in superpositions of the
two states. For example, a spin in an equal superposition of being on the left and
right sites would correspond to a spin in the x — y plane of a Bloch sphere. The
transition from a uniform phase at small tilt to a density wave phase at large tilt
corresponds to a transition from a paramagnetic phase with all spins pointing up to
an antiferromagnetic phase where spins alternate between pointing up and down.

In the next section, we will formally show that the effective spin Hamiltonian
equivalent to the dipole model is that of an antiferromagnetic Ising chain with longi-

tudinal and transverse magnetic fields:

H= JZ (SLSTTY — (h, +6%)SE — h,Sh) (6.1)

Here Si and S: are spin-1 operators of the ith spin, and S2Si*! denotes the nearest-
neighbour antiferromagnetic spin interaction of strength J. A spin flip is driven by
the transverse magnetic field, corresponding to the dimensionless tunneling ¢ = t/.J
between sites of the Mott state according to h, = 23/?¢ . The longitudinal field
h, = 1—A orients the spins in the effective model. It is composed of a bias of strength
one and the dimensionless tilt offset A = A/J |, where A = E — U is the difference
between the tilt per lattice site, and the interaction U. Additionally, §' = §F;/J is a
local z-field inhomogeneity, equivalent to a local tilt inhomogeneity d F;. Figure 6.2(b)
illustrates how the combination of spin interaction and longitudinal magnetic bias field
realizes the nearest-neighbour constraint of the tilted Mott insulator, preventing two
adjacent spins from both being anti-aligned to the longitudinal field. The energy cost

of such an excitation would be the spin interaction J, which is on order of the energy
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gap U in the actual system.
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Figure 6.2: Spin model and its phase diagram. (a) An antiferromagnetic 1D Ising
chain in longitudinal (h,) and transverse (h,) magnetic fields exhibits two phases
at zero temperature (PM and AFM). These phases are separated by a second or-
der phase transition (red line), except at the multicritical point (h,; h,) = (1; 0),
where the transition is classical and first order. The region that can be accessed in
our experiment, in the vicinity of (h.; h,) = (1; 0), is highlighted in blue. (b) In
this neighbourhood the Hamiltonian may be decomposed into a constraint term that
prevents adjacent spin-flips (red highlight), and fields that drive the phase transition
(blue highlight).

6.1.1 Mapping onto the spin model

We follow Sachdev et al. in formally mapping a 1D Mott insulator of spinless

bosons in a tilted lattice onto a chain of interacting dipoles, and then onto a chain of
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spin-1/2 particles with AF Ising interactions in longitudinal and transverse fields. In

a homogeneously tilted lattice, the 1D Bose-Hubbard Hamiltonian reads:

U ,
H= —tz (a;aqu_l + aja;[»H) + 5 an (nj — 1) - EZ] ‘N (62)
' J J

J

Here t is the nearest-neighbour tunneling rate, U is the onsite interaction, F is the
tilt per lattice site, a} (a;) is the creation (annihilation) operator for a particle on
site j, and n; = a;aj is the occupation number operator on site j. We will work in a
regime where t,|E — U| < U, E. For a tilt near U = FE, the onsite interaction energy
cost for an atom to tunnel onto its neighbour is almost precisely cancelled by the tilt
energy. If one starts in a Mott insulator with M atoms per site, an atom can then
resonantly tunnel onto the neighbouring site to produce a dipole excitation with a
pair of sites with M + 1 and M — 1 atoms. The resonance condition is only met
if adjacent sites contain equal numbers of atoms, so only one dipole can be created
per link and neighbouring links cannot both support dipoles. We define a dipole
a;al

——~ 4L The Bose-Hubbard Hamiltonian above can hence

creation operator d; =
M(M+1)

be mapped onto the dipole Hamiltonian

J

H=—/MM+ 10ty (d} + dj> +(U-E)Y did, (6.3)

subject to the constraints d}dj <1, d}deHd}dj = 0. The factor of \/M(M + 1)
arises due to bosonic enhancement. It is important to note here that there are only
two parameters in the Hamiltonian at this point, £—U and t, since U has dropped out

of the problem when we restricted our attention to the resonant subspace. Therefore,
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the critical point of the quantum phase transition in this Hamiltonian can only depend
on the ratio of these two parameters.

To map from the dipole Hamiltonian to the spin-1/2 Hamiltonian, we define a
link without (with) a dipole excitation to be an up (down) spin along z. Then
the creation/annihilation of dipoles are related to the flipping of spins, and we can
write: S = 3 — d;dj, Si = %(d} +dj>, and S} = %(d} —dj). The constraint
forbidding adjacent dipoles can be implemented by introducing a positive energy
term Jd}deHd;dj =J( T ) (sz — 1) to the Hamiltonian, where J is of order
U. This term gives rise to nearest-neighbour interactions and an effective longitudinal

field for the spins.

Defining A = E — U the Hamiltonian for the spins now reads:

H = JZSgSgH—Q M(M+1)tZS§-(J-A)ZS~;’ (6.4)
J J

J
= J) (SISIT = h,S)— h.SI) (6.5)
J

The dimensionless fields are defined as h, = 2%/%t/.J = 23/%f h, =1 — %, with M set

to one as in our experiment.

6.1.2 The paramagnetic and antiferromagnetic phases

The Hamiltonian described in the previous section exhibits a quantum phase
transition between a paramagnetic and antiferromagnetic state as the parameter
g = (h, — 1)/h, is varied across a critical value. Our approach towards understand-

ing this quantum phase transition will start from the two classical ground states on
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either side of transition when g is far from its critical value. We will then proceed to
understand the effect of quantum fluctuations as we move away from these limiting
cases, but remain far from the critical point.

We start with the classical case h, = 0, where there are no tunneling-induced
quantum fluctuations. There are two competing terms in the Hamiltonian: S757+!
prefers antiferromagnetic ordering while —h,S? prefers alignment with the field. For
g > 0, the field-induced ordering overcomes the antiferromagnetic spin-spin interac-
tion and the ground state is a paramagnet with all the spins pointing up along h,.
For g < 0, the antiferromagnetic term dominates, producing staggered ordering. At
precisely g = 0, the Zeeman energy cost of anti-aligning a spin with the field is ex-
actly compensated for by the reduction in energy from the antiferromagnetic spin-spin
interaction.

In the antiferromagnetic state, there exists an interesting interplay between the
degeneracy of the ground state, the boundary conditions and the length of the chain.
For an infinitely long chain, it is clear that there are two possible states, one where
the up spins are on the odd sites and the other where they are on the even sites. In
the absence of symmetry breaking, the ground state is a symmetric superposition of

those two states

[O) = | TR )+ LI ) (6.6)

For exact diagonalization studies, we will often use periodic boundary conditions.
Under these conditions, the ground state depends on whether the chain length is

even or odd. With an even chain length, the situation is similar to the infinite chain
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described above with two degenerate ground states. However, for an odd chain, the
system is frustrated and a defect has be introduced. This defect can be on any site
in the chain, and therefore, for a chain of length N, the ground state is superposition
of N states with different positions of the defect. For example, with five sites, the

ground state with periodic boundary conditions is

[0) = [ TR + 1) + [T + [T + ] 1) (6.7

Open boundary conditions, which are more relevant for the experiment, can also pro-
duce interesting frustrated states. The boundary conditions of chains in the experi-
ment can be set by thermal defects, superfluid atoms at shell boundaries or disorder

in the lattice potential.

6.1.3 Second order hopping processes

In this section, we reintroduce the tunneling (finite h,) but work in the weak
tunneling regime (|g| — o0). This will allow us to obtain the ground and excited
states using perturbation theory about the h, = 0 states. The constraint that there
are no neighbouring dipoles translates to never having two neighbouring down spins in
a chain. On the other hand, neighbouring up spins are within the resonant subspace.
This breaking of up-down symmetry by the h, field will lead to the emergence of an
effective local spin hopping mechanism in the excited states. This mechanism leads
to the delocalization of “spin defects”.

The finite-tunneling perturbed ground states contain an admixture of states with

a single defect, a down spin on the paramagnetic side or a domain wall on the anti-
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ferromagnetic side. Denoting the state with a defect on the ith site as |i), the ground

state is

W) =m0 2 ST, (6.5)

Next we consider the first excited states on the paramagnetic side of the transition.
These have one anti-aligned with the field, for example | 11,111 ...). Relative to the
ground states with all spins field-aligned, this state has an energy h, — 1 (where all
energies are in units of J). The following second-order process can occur because the

initial and final states have the same energy

[T ) — [APPRHT ) — [T ) (6.9)

Therefore, the defect can locally hop to a neighbouring site with an effective matrix

element h2/4(h, —1). Note that a similar process

[T ) — [APRAT ) — [T ) (6.10)

is disallowed because the intermediate state is outside the resonant subspace. We
can write down an effective Hamiltonian within the subspace of excited states with

exactly one spin flipped. The effective Hamiltonian [163] is

Hegg/J = (h. = 1)) {Ii><i| + 4%]2 () Gl + 18) G+ 1] + i+ 1) () (6.11)

1

Diagonalization of this effective Hamiltonian gives rise to a band of states having a

single delocalized defect with an energy width on order of the effective hopping matrix
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element and the states can be labelled with the momentum of the defect, in a manner
analogous to the Bloch bands of an atom in a lattice. The lowest energy state has
momentum 7, anticipating the formation on antiferromagnetic order.

On the antiferromagnetic side of the transition, the ground state has a staggered
spin order and the first excited state has one flipped spin, leading to a domain wall,
for example | 1Y ...). Again, an effective local hopping term allows the domain
wall to split into two walls that move around and delocalize through a second order

process similar to the one described above

[RAT co) — [ L ) — [T ) (6.12)

6.1.4 Quantum phase transition and the phase diagram

While perturbation theory allows us to study the state of the system near the
classical limits, it breaks down as we approach the critical regime. A good variational
wavefunction that can capture most of the physics in the critical regime is simply a
sum of all the states in the resonant subspace, i.e. all states with no neighbouring
down spins [137]. For a system with an even number of spins N and periodic boundary
conditions, the number of such states can be shown to be the nearest integer to ¢~
where ¢ is the golden ratio ¢ = (1 ++/5)/2, i.e. the critical state is a superposition
of an exponentially large number of states in the system size.

Exact diagonalization studies [163] show that the transition is in the Ising uni-
versality class. For example, the energy gap A at the critical g scales as A ~ 1/N.

This indicates that a quantum simulation that is to remain in the ground state takes
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a time that scales linearly with the system size, as opposed to a classical simulation
which would scale exponentially.

The phase diagram of the spin model in a homogeneous field [137, 135] (6° = 0)
is shown in Figure 6.2(b). The mapping of the Hubbard model to the spin model
is only valid U, J > t, A , corresponding to the vicinity of the multicritical point at
(h.,hz) = (1,0). The mapping breaks down away from that point because states
with three atoms on a lattice site are not within the Hilbert space which maps to the
spin model. Nevertheless, the region around the multicritical point is interesting for
two reasons. First, it is a critical point, and therefore it opens the door to studying
interesting critical phenomena. Second, the presence of a large longitudinal field
prevents using the fermionization approach [161], which can be used to obtain an exact
energy spectrum for the transverse Ising model with no longitudinal field. Since the
model is non-integrable, it can be used to address interesting questions regarding the
thermalization of 1D systems starting from different initial non-thermal states [12].

In the regime where the model mapping is valid, the phase diagram consists simply
of a line separating the PM and AFM phases that is tangent to the curve at the
multicritical point. Assuming a parent Mott insulator with n = 1, the equation of

this line is h, = 1 — 0.66h,.
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6.1.5 Extracting spin observables

Our work will focus on two spin observables. The first is the expectation value of

spin along the longitudinal field given by

(57 = v (8D (6.13)

This is a quantity that can be easily extracted from local measurements. Since our
microscope is sensitive only to the parity of the site occupation number, PM domains
(with one atom per lattice site) should appear as entirely bright regions, and AF
domains (with alternating 0-2-0-2 occupation) as entirely dark regions. By averaging
the occupation of a site over multiple images, we obtain the probability of an odd
occupation on the jth lattice site (pgdd), which corresponds to the probability of having
a single atom on a site within the subspace of our model. This is related to the spin

observables in the effective model by (S77157) = % (pgdd — %) We average over all the

atoms in the chain to obtain p,., = plue, which in combination with the constraint

that neighbouring down spins are not allowed permits us to relate the chain averaged

mean z-projection of spin to p,. according to: (S7) = Pedd  This quantity varies
smoothly across the transition and depends only weakly on the chain length as seen
in Figure 6.3.

On the other hand, there is a second observable which depends on the chain length

(Fig. 6.3) and is supposed to be non-analytic across the transition for a thermody-
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Figure 6.3: Comparing S, to the order parameter. An exact diagonalization calcu-
lation (for h, = 0.004) of the ground state of a 1D chain of four (black) and eight
(red) Ising spins with nearest-neighbour interactions, revealing that S, (solid) is not
sensitive to atom number, while the order parameter (dash-dotted) is. It is antici-
pated that the order parameter will exhibit a cusp in the large-system limit, though
the exponential scaling with atom number precludes simulating substantially larger
systems on a classical computer.

namic system, namely the order parameter for the transition [163] given by

0] =<(% Z(—l)jsg)2> (6.14)

This quantity cannot be extracted directly from our in-situ measurements since it
would require us to differentiate between sites containing no atoms and those con-
taining two atoms. In principle such a measurement can be done in our system by

loading a single chain and performing an expansion along the direction perpendicular
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to the chain in a conservative lattice before turning on the pinning lattice. This would
greatly reduce the chances of light assisted collisions between two atoms that were
initially on the same site. Another approach that directly yields the order parameter,
which we use in our experiments, is to use 1D quantum noise interferometry [2]. The
information obtained from the noise correlation signal is identical to what can be ob-
tained using Bragg diffraction of light off the antiferromagnetic crystal [43], analogous
to neutron scattering or magnetic x-ray scattering in solids.

The amplitude of the noise correlation signal at separation d for a chain consisting

of a large number of atoms is

1
C(d):1+ﬁ

- madj
E e ' THE n;

J

where N is the number of lattice sites, j is the lattice site index, a is the lattice
spacing, m is the mass of the atom, ¢ is the expansion time, n; is the occupation of
the jth site. It can be shown that the correlation signal at is related to the order
parameter O = C' (%) — 1.

The finite chain length in the chains reduces the baseline of the correlation signal
from 1 by an amount on order of 1/N. In an ideal system, the width of the antifer-
romagnetic noise-correlation peaks can be used to infer the domain size. However, in

the experiment the finite expansion time and corrugations of the potential in which

the atoms expand broaden the correlation peaks.
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6.1.6 Exact diagonalization studies of small chains

For small chains containing less than fifteen spins, we can numerically solve the
Schroedinger equation to obtain energy spectra and eigenstates of the system as well
as its time evolution. Figure 6.4(a) shows a system of seven spins with open boundary
conditions in the presence of additional harmonic confinement that can be present
in our system. The harmonic confinement corresponds to a longitudinal magnetic
field that varies linearly in space, i.e. ¢ = Ki, with K = 0.01 in this case. The
resulting energy spectrum exhibits a series of level crossings corresponding to flipping
one spin at a time while forming the AFM. The gaps between the ground and first
excited state are no longer many-body gaps which scale inversely with the system size,
but rather two-body gaps on order of ¢. Therefore, for preparation of an AFM state,
adiabaticity should be much easier to satisfy in the presence of harmonic confinement.
Figure 6.4(b) shows the energy spectrum of a system of six spins with no harmonic
confinement plotted vs. h,. In this case, we have used periodic boundary conditions,
and there are two degenerate states on the antiferromagnetic side of the transition.

Next we show the results of time-dependent studies. Figure 6.5(a) shows the time
evolution of (S,) and the Neel order parameter while linearly sweeping h, across the
transition starting at 1.25 and ending at 0.85 over a time 100/J, starting with a
Mott state (all spins up), as done in the experiment. The oscillations observed are
due to the imperfect overlap of the initial state with the ground state of the system.
Figure 6.5 shows the mean length-weighted domain length for different sweep rates

across the transition.
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Figure 6.4: Exact diagonalization energy spectra of the magnetic Hamiltonian for
small systems. (a) Energy spectrum of a 1D Ising chain in a longitudinal field gradient
of 0.01 per lattice site, reflecting seven spins and open boundary conditions. As
the longitudinal field is tuned across the critical point, each avoided crossing of the
lowest energy state corresponds to a single spin-flip with energy gap h, = 0.001.
(b) Energy spectrum for a homogeneous 1D Ising chain of six spins, with periodic
boundary conditions. In contrast to a., the single avoided crossing drives all spin-flips
simultaneously, with a gap that decreases with increasing system size, as expected
for the critical slowdown near a quantum phase transition.

6.1.7 Beyond the Ising Hamiltonian

The Ising Hamiltonian we have used to describe our system neglects several higher
order processes that occur in our system. In this section, we estimate the contributions

of these processes.

Interchain Tunneling

Tunneling between chains is excluded from the spin-mapping we have described,
though under certain conditions it produces exotic transverse superfluidity, as de-
scribed in Ref. [145]. For our purposes, these tunneling processes serve only to take the

system out of the Hilbert space described by the spin model. Most of our experiments
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Figure 6.5: Exact diagonalization dynamics of the Ising chain for small chains. (a)
The time evolution of the mean magnetization S, and the Neel order parameter for
a system of eight spins with periodic boundary conditions during a linear ramp of
the longitudinal field A, from 1.25 to 0.85. The total ramp time is 100/J and the
transverse field h, is 0.1. (b) The mean length-weighted domain length at the end of
a ramp in the same system from h, = 4 to h, = 0.1. For this initial value of A, the
overlap with the paramagnetic state is very good and the are almost no oscillations
in an adiabatic ramp.

were performed at a transverse lattice depth of 45FEr, corresponding to an interchain
tunneling rate of t,,,,qee = 27 X 0.07Hz. This tunneling rate is basically negligible on
our experiment timescale of 250ms. Some data was taken at 35Er transverse lattice
depth. At this depth the transverse tunneling rate is t,.psese = 27 X 0.27Hz, which
is small compared to our lattice inhomogeneities, and so results in highly-suppressed,
off-resonant Rabi-flopping. In practice, increasing the transverse lattice from 35Er

to 45Er results in a modest ~ 5% improvement in the quality of the Mott insulator

after transitioning to the antiferromagnetic state and back.
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Second Order Tunneling

In addition to nearest-neighbour tunneling which creates doublon-hole pairs, and
proceeds at a rate v/2t when the tilt £ = U, there remains a second-order tun-
neling process which creates triplon-hole-hole trios at a rate t5, = \/5% For our
longitudinal lattice depth of 14Er, and interaction energy U = 27 x 416Hz, we find
ls.o. = 2m x 0.4 Hz. Because our system is continuously tilted, all such transitions will

iy

be tuned through resonance. For our typical experiment, R,.., = 555~ ~ 27X 840Hz2,

250
so the Landau-Zener adiabatic transition probability to the triplon state piipe. =
1—exp (2%%) = 0.8%. In future experiments with slower ramps, both this effect
and the closely related second-order Stark-shift will become more of a concern. These
can be further suppressed relative to the desired dynamics by increasing the longitudi-
nal lattice depth, at the expense of slower many-body dynamics. It bears mentioning

that for our experimental parameters the triplon state experiences an additional shift

of approximately 22Hz, due to multi-orbital interactions [191, 100].

Impact of physics beyond the Hubbard Model

For a 14 F, lattice, the next-nearest neighbour tunneling rate is suppressed relative
to that of the nearest neighbour [98] by a factor of ~ 300, making the total rate
nextneignbour = 27 X 0.04Hz, which is negligible on present experiment timescales. The
longitudinal nearest-neighbour interaction shift for one atom per lattice site is ~

1073Hz, and interaction driven tunneling [59] occurs with a rate of 27 x 0.3Hz.
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6.2 Observation of the phase transition

Our experiments start with a single layer two-dimensional Mott insulator of " Rb
atoms in a 35E, lattice with 680 nm spacing. The atoms are in the |F' = 1,m; =
—1) state and the initial fidelity of the Mott insulator is 0.95(2). We generate our
effective h, by tilting the lattice potential by E per lattice-site, which is achieved
via a magnetic field gradient along the x direction (defined in Fig. 6.6(a)). This
gradient is applied in two steps - first a fast ramp (in 8 ms) to £ = 0.7U, just
below the transition point [163, 137] at £ = U + 1.85¢ (h, = 1 — 0.66h,,), followed
by a slow linear ramp (in 250 ms) across the transition ending at 1.2U, adiabatic
on the many-body timescale. Before starting the slow gradient ramp, the lattice
depth along the y direction is increased (in 2 ms) typically to 45(7)E,, while the
depth along the x direction is reduced to 14(1)E,. This decouples the system into
1D chains with significant tunneling only along their lengths. Simultaneously, we
compensate the tilt inhomogeneity arising from harmonic confinement, leaving only
residual inhomogeneity arising from our lattice projection method [13].

We probe the state of the system at different points as it undergoes the phase
transition in one of two ways. We can either perform an in-situ measurement or a
1D expansion of the chains to achieve noise correlation interferometry. In both cases,
we use fluorescence imaging after pinning the atoms in a deep lattice to obtain the
density distribution with single atom/single lattice-site resolution. Images far on the
Mott side of the transition are used to select chains of atoms within the first shell
of the insulator. The phase transition is then studied only within these chains, with

quantitative curves employing data only from the single chain with lowest disorder.
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Lattice depths are calibrated to 15% using Kapitza-Dirac scattering, however the
width of single-site transition regions was found to be a more sensitive probe of the
longitudinal tunneling rate and hence the longitudinal lattice depth and accordingly
was employed throughout these experiments.

The magnetic field gradient is calibrated using lattice modulation spectroscopy.
In the presence of a potential gradient E per lattice site, modulation of the lattice
depth along the chains causes resonant excitation at two frequencies, U4+ FE and U — F
corresponding to an atom in the Mott insulator moving up or down gradient. We
detect these excitations as a reduction in the value of p,.4 using in-situ imaging. Using
the mean of the two resonances, we obtain the interaction energy U = 430(20)Hz at
16 E, longitudinal lattice, 45F, transverse lattice (corresponding to U = 413(19)Hz at
14F, longitudinal lattice, where the experiment operates, which agrees with a band-
structure calculation of 401(25) Hz). The separation between the resonances as a
function of applied gradient is used to calibrate E. At zero applied magnetic field

gradient, we find the stray gradients to be less than 0.02U.

6.2.1 In-situ observation of the phase transition and its re-
versibility

We initiate the gradient ramp on the paramagnetic side of the phase transition
(typically at E/U = 0.7), as the initial Mott state with single site occupancy of
0.95(2) has good overlap with the paramagnetic ground state (Fig. 6.6(a)i). At the
end of the ramp (E/U = 1.2), we observe an even occupation with probability 0.90(2)

(Fig. 6.6(a)ii), as expected for an AF phase in the magnetic model where the spin-
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Figure 6.6: Probing the paramagnet to antiferromagnet phase transition. (a) Rep-
resentative single-shot images as the tilt is swept adiabatically through the phase
transition in 250 ms. The upper image (i) shows near-perfect n = 1 (bright) and
n = 2 (center dark) Mott insulator shells in PM phase. The lower image (ii) is the
inverted shell structure characteristic of the staggered ordering of the AF phase after
a tilt along the x-direction. The inversion occurs because chains of sites in a shell
with N atoms per site are converted into a staggered phase wherein sites alternate
between N — 1 and N + 1 atoms, and so a shell with even occupation becomes a
region of odd occupation, and vice-versa. The remaining pictures (iii) are several
chains (within the red rectangles in i and ii) of the N = 1 shell at various points
during the sweep, t = 0, 50, 100, 150, 175 and 250 ms, showing AF domain formation.
(b) To demonstrate the reversibility of the transition, we adiabatically ramp from the
PM phase into the AF phase and back in 500 ms. The probability that a site in the
N = 1 shell has odd occupation at various points during the ramp is observed to

drop, and subsequently revive, as expected when the system leaves and then returns
to the PM phase.

spin interaction overwhelms the effective field h,. In between, density-wave ordered
regions begin to form, as shown in Figure 6.6(a)iii. Figure 6.7 shows p.4 at various
times during this ramp. A crucial characteristic of an adiabatic transition is that it
is reversible. Figure 6.6(b) shows p,qq during a ramp from a PM to an AF and back.
The recovery of the singly occupied sites is evidence of the reversibility of the process,

and hence that the intermediate state is in fact an antiferromagnet.
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Figure 6.7: A closer look at the PM to AF quantum phase transition within an N
= 1 shell, showing p,q, vs. tilt. Errorbars reflect 1o statistical errors in the region-
averaged mean p.q,. The blue curve is a guide for the eye.

6.2.2 Noise correlation detection of long-range order

We directly verify the existence of staggered ordering in the AF phase via a 1D
quantum noise correlation measurement [2]. We perform this measurement by in-
creasing the lattice depth along the chains to 35F, within bms and then rapidly
switching off that lattice to realize a 1D expansion. After an expansion time of 8
ms, the atoms are pinned for imaging. To extract information about density wave
ordering in the chains, several hundred images (250 for paramagnetic, 500 for antifer-
romagnetic phase) each containing 15 chains, are fitted to extract the atom positions,
and then spatially autocorrelated and averaged as described in Ref. [60].

The resulting spatial autocorrelation is plotted in Figure 6.8 at both the beginning
(i) and end (ii) of the ramp from the PM phase to the AF phase. In the PM phase

the spectrum exhibits peaks at momentum difference P = h/a, characteristic of
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a Mott insulator [60]. In the AF phase peaks at P = h/2a appear, indicative of
the emergence of a spatial ordering with twice the wavelength. In principle the
mean domain size can be extracted from the P = h/2a peak width, however our
measurement is broadened by both finite expansion time and aberration arising from
the fact that the 1D expansion is performed not in free space but in slightly corrugated

confining tubes.
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Figure 6.8: Noise correlation measurement after 8 ms time of flight expansion along
the chains. (a) In the PM phase, peaks at momentum h = a correspond to a period-
icity of one lattice site before expansion, characteristic of a Mott insulator. (b) In the
AF phase, additional peaks at momentum h = 2a indicate the existence of staggered
ordering, with a periodicity of two lattice sites.

6.2.3 Single-site study of the transition

In the presence of harmonic confinement, a high resolution study reveals that the
spins undergo the transition sequentially due to the spatial variation of the effective
longitudinal field. Figure 6.9(a) shows p,q4 vs. tilt for two different rows of a harmon-
ically confined Mott insulator, separated by seven lattice sites. These two rows tune
through resonance at different tilts, as can be understood from the energy level dia-
gram Figure 6.4(a). This regime, described by an inhomogeneous field Ising model,

presents a number of new possibilities. For example, Schroedinger cat states [118]
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Figure 6.9: Impact of harmonic confinement. For a ramp across the transition (in 250
ms) and back, (a) harmonic confinement broadens the transition, inducing rows of
the cloud seven lattice sites apart to undergo the transition at different applied tilts.
(b) Once the confinement has been properly compensated, the average transition
curves from the two rows overlap. Not apparent from these averaged curves is a small
amount of residual tilt inhomogeneity. All errorbars are 1o statistical uncertainties
derived from the mean of p.., averaged over a region.
could be created by preparing the first spin in the chain in a superposition of up and
down states and then sequentially ramping through the remaining spins. We next
realize a homogeneous field Ising model by eliminating the harmonic confinement im-
mediately before the slow ramp into the AF phase. Figure 6.9(b) demonstrates that in
this case different rows transition almost simultaneously, as anticipated theoretically
(Fig. 6.4(b)).

After compensating the harmonic confinement, we are able to resolve residual
site-to-site tilt inhomogeneities, caused by lattice beam disorder. For the rest of this
work we will focus on a single six-site chain with particularly low inhomogeneity. We

identify such a chain by imaging individual lattice sites as the system is tuned across

the PM-AF transition. Figure 6.10 shows p.q4 across the transition for one of the sites
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Figure 6.10: Single-site transition curve. The theory curve reflects a zero temperature
exact diagonalization calculation of the ground state of a chain of six Ising spins
(the shape of the p.4q curve is insensitive to chain length) with periodic boundary
conditions. The curve has been offset and rescaled vertically to account for defects
arising from both the initial MI, and heating during the ramp. The theory allows us to
extract a lattice depth of 14(1)E,. We attribute the residual fluctuations around the
expected curve to residual oscillations reflecting non-adiabaticity arising from that
fact that the ramp was initiated too close to the transition. The error bars are lo
statistical uncertainties.
fitted with a theory curve, while Figure 6.11 shows p,qq for all the six adjacent sites
(black curves), versus tilt, as the system is ramped across the transition. The r.m.s.
variation in the fitted centers is 6Hz, significantly less than their mean 10% — 90%
width of 105(30)Hz, corresponding to the effective transverse field 23/%t = 28Hz.

By quickly jumping across the transition with tunneling inhibited, and then ramp-
ing slowly across the transition in reverse with tunneling allowed (red curves, taken

under slightly different conditions), we are able to rule out large, localized potential

steps that would otherwise prevent individual spins from flipping. The curves in Fig-
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Figure 6.11: Site-resolved transition in near-homogeneous Ising model. p.q, of six
individual lattice sites forming a contiguous 1D chain, versus the tilt, shown for both
forward (black) and reverse (red) ramps. The spins transition at the same applied
field to within the curve width, set by quantum fluctuations. A typical 1o statistical
errorbar is shown. The single-site widths are consistent with a longitudinal lattice
depth of 14(1)E,, in agreement with a Kapitza-Dirac measurement of 15(2)F,. The
reverse curve demonstrates our ability to adiabatically prepare the highest energy
state of the restricted spin Hamiltonian.

ure 6.11 provide our best estimate of the inhomogeneity. However, exact determina-
tion of the site-to-site disorder using this technique is complicated by the many-body
nature of the observed transition. Accordingly, a technique such as site-resolved mod-
ulation spectroscopy would have to be used to ensure that the inhomogeneities are

small enough to study criticality in long, homogeneous Ising chains.
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6.3 Domain formation and adiabaticity timescales

The magnetic interactions should produce even-length domains of dark sites, cor-
responding to AF spin domains. To quantify the length of these AF domains we study
the length of the measurable dark domains, defining a dark domain as a contiguous
string of dark sites that is bounded either by a site with an atom or an edge of the re-
gion of interest. We then calculate the mean length-weighted dark chain length from
this data. The length-weighting is necessary because the quantity of interest is how
many spins in the AFM participate in a domain of a given size. For example, Bragg
diffraction experiments would also give a signal that is proportional to the length-
weighted domain size, and the Scherrer formula [140] used in X-ray crystallography
gives a volume-weighted domain size.

Defects in the initial Mott insulator (MI) reduce the effective system size. Their
appearance can produce an overestimate of the dark chain length by either connecting
two dark chains, or appearing on the end of a dark chain. The initial MI defect
probability is typically 4% per site over an entire n = 1 shell, after correcting for
losses during imaging.

Atom-losses during the ramp can have similar consequences for the observed dark
domain length, and can also suppress the observed dark domain length by knocking
atoms out near the end of the ramp once the AF has already formed. This atom-loss
rate is estimated from the MI 1/e lifetime in the tilted lattice, measured to be 3.3
seconds. To perform this measurement we first ramp to a tilt of 300Hz per lattice
site and tune the lattice depths to 45Er and 14Er for transverse and longitudinal

lattices, respectively. We then hold for a variable time, and measure the remaining



Chapter 6: Magnetic quantum phase transition in a spin chain 116

atom number.

A worst-case estimate for the impact of missing atoms can be reached from the
fraction of the time that the system is missing no atoms at the end of the ramp. The
six-site chain analyzed in the main text is initially fully occupied 79% of the time.
During the time it takes the dark-domain length to grow to 4 lattice sites (60ms),
heating only reduces this number to 73%.

We start by studying the domain size vs. the applied gradient when the system is
prepared adiabatically. Figure 6.12(a) shows the observed mean length-weighted dark
domain length extracted from 43 single-shot images per tilt, as the system is ramped
from the PM phase into the AF phase. The dark domain length is here defined as the
number of contiguous dark sites. On the AF side of the transition, this mean dark
domain length grows to 4.9(2) sites, on the order of the system size of six sites.

We next investigate the impact of ramp rate on the transition from the PM phase
into the AF phase in the homogeneous chain. The red curve in Figure 6.12(b) shows
Poaa as & function of ramp speed across the transition, which may be understood quali-
tatively as the fraction of the system that has not transitioned into AF domains of any
size. The time required to flip the spins is ~ 50ms, consistent with tunneling induced
quantum fluctuations driving the transition. The black curve in Figure 6.12(b) is the
mean length-weighted dark domain length as a function of ramp rate. As above, the
mean dark domain length saturates near 4.8(2) sites. The remaining defects likely

result from imperfect overlap of the initial MI with the PM state at finite A, as well

as defects of the initial MI and heating during the ramp.
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Figure 6.12: Dynamics of antiferromagnetic domain formation. Within a single six-
site chain with low disorder, (a) shows the mean dark-domain length as a function
of the tilt in units of U, for both forward (black) and reverse (red) ramps. As the
system enters the AF phase the mean dark domain length grows until it approaches
the chain length. Domain formation in the reverse ramp, beginning on the AF side of
the transition, demonstrates the adiabatic generation of AF domains on the PM side
of the transition, corresponding to the highest energy state of the spin Hamiltonian
(inset). Within the same chain, (b) shows p,q, (blue) and dark domain length (black)
versus the duration T.,,, of the ramp from E/U = 0.7 to E/U = 1.2. The top axis
shows the scaled inverse sweep rate a = 872t?/(AE /Ty ), where AE is the sweep
range in Hz, and ¢ is the tunneling rate, in Hz, along the chain. The characteristic
timescale for domain formation is o = 2, or 7,,,, ~ 50 ms, indicating that tunneling
along the chain is the source of the quantum fluctuations that drive domain formation.
Errorbars for the dark chain lengths are 1o statistical uncertainties, arising from the
number of detected domains of each length. Those for p..q are the 1o statistical
uncertainty in the mean of the six-site chain.

6.4 Preparation of the highest energy state

While the antiferromagnetic domain formation discussed thus far occurs in spin-
chains that remain in a quantum state near the many-body ground state, we can also
produce antiferromagnetic domains that correspond to the highest energy state of
the restricted spin Hamiltonian. This is achieved by starting with the Mott insulator

and rapidly ramping the field gradient through the transition point with tunneling
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inhibited, then adiabatically ramping back with tunneling permitted, as described
in the previous section. This prepares a PM on the AF side of the transition, and
adiabatically converts it into an AF on the PM side. The resulting dark domain
length data are shown in Figure 6.12(a) (red curve), demonstrating that these high
energy states are sufficiently long-lived to support domain formation. Similar ideas
have been proposed for preparation of difficult-to-access many-body states using the

highest energy states of Hamiltonians with easily prepared ground states [176].

6.4.1 Entropy and thermalization in the spin chains

One source of much confusion in the literature is the picokelvin range tempera-
tures often quoted as necessary for the observation of magnetic ordering in optical
lattice systems [36]. Therefore it might be surprising to the reader that we have
achieved such ordering without additional cooling in the lattice [189, 129, 128]. To
clarify this issue, it is important to realize that ultracold gases in optical lattices are
effectively isolated from their environment, and as such it is entropy and not tem-
perature which is constant as system parameters are tuned. We have demonstrated
spin polarized Mott insulators with defect rates at the percent level, corresponding
to a configurational entropy far below the spin entropy required for magnetic order-
ing even with traditional superexchange interactions. In our scheme, we have used
the Mott insulator to initialize a magnetic system with low spin entropy and then
engineered a magnetic Hamiltonian whose paramagnetic ground state possesses good
overlap with the initial Mott state, which we subsequently tune through a quantum

phase transition to produce the antiferromagnetic state. This is a general recipe [63]
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IW mean size LW mean chain
Mott fidelity poqq | Entropy (S/Nkg) ) length (unther-
(thermalized) malized)
0.95 0.23 22 39
0.975 0.13 52 79
0.99 0.063 144 199

Table 6.1: Configurational entropy per particle for various Mott fidelities. If the spin
degrees of freedom thermalize efficiently with the Mott degrees of freedom, the spin
entropy will then be equal to the Mott entropy. The corresponding mean AF domain
size is then computed for each Mott entropy. In the absence of thermalization, the
Mott defects break the spin chain into disconnected subsystems, whose mean size is
computed in the fourth column, and is comparable to the mean chain length in the
presence of thermalization.

and the main challenge, rather than further cooling, is the necessity of performing
sufficiently slow adiabatic ramps to minimize diabatic crossings of manybody energy
gaps.

We now proceed to study entropy and thermalization in our system more quanti-
tatively. Table 6.1 shows the entropy per particle (S/Nkpg) for several different Mott
insulator fidelities (p,qq), assuming a chemical potential y = U/2, as well as the mean
length-weighted AF domain size D in an infinite 1D magnetic system with the same
entropy per particle. Here D = 2(2 — €) /¢, where the spin-dislocation probability in
the AF € is defined by S/Nkg ~ (¢/2) [1 + log(1/¢)]. Spin defects are ignored as they

are both dynamically and thermodynamically unlikely. The entropy per particle can

] — Poaa lOZ [ 2Wodd }

1=podad

be related to the Mott insulator fidelity by: S/Nkp = log [1_5 —
If such thermalization took place in our finite length chain of six sites (with initial
fidelity 97.5%), the mean domain size would be limited by the system size to 5.3 sites.

Experimentally, we find most Mott defects to be unbound doublons and holes,

which do not directly map to excitations in the spin model. The large energy gap
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present in our tilted lattice, combined with conservation of particle number, make it
difficult for these Mott defects to thermalize with spin degrees of freedom. Such ther-
malization would require, for example, migration of a doublon to a hole, or decay via
a very high order process into several spin defects- quite unlikely within the experi-
mental timescale. Consequently, these nearly static defects act as fixed boundary con-
ditions that limit the effective length of the simulated spin chains. Table 6.1 also pro-

vides the expected uninterrupted chain length, computed as L., = (14poaa)/ (1 —Doaa)-

6.5 Prospects for studying criticality

It is clear from the previous section that entropy does not currently limit the
length of the Ising chains in our system. Rather, the current limitation on studying
critical physics in longer chains is the presence of inhomogeneities in the longitudinal
field (62 # 0). This impacts the critical behaviour by breaking the translational
symmetry, inducing different sites to transition at different applied tilts. Accordingly,
the resulting many-body energy gaps, dynamical timescales [50, 92], and entropy of
entanglement [186] are different from the homogeneous case.

The next challenge in extending the chain length is the higher order processes
not included in the Ising Hamiltonian discussed in Sec. 6.1.7. These processes are
weaker by a factor of ¢/U than the transverse field. However, for studying criticality
in a chain of length N, we need to consider the many-body gap that is on order ¢/N,
and for large enough N, the higher order processes cannot be ignored. Larger chain
lengths can be achieved by reducing ¢, but eventually more fundamental limits of

lattice heating (Sec. 3.2.1) or background gas collision lifetime are encountered. A
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better approach would be to increase U, either by using a Feshbach resonance or using
a lighter species such as bosonic lithium. Critical physics can be probed by measuring
the scaling of domain formation with ramp speed (Sec. 6.3) or the sharpening of the
order parameter for increasing chain length as has been recently demonstrated with

ion trap quantum magnetism experiments [94].

6.6 Manipulation of individual spins

(@) (b) (c)

Spin flipped
\

Figure 6.13: Manipulation of the spin state in the chains. The potential due to
the magnetic gradient shown in (a) is combined with a projected Gaussian optical
potential (b) created with a spatial light modulator. This gives the total potential in
(c). The pair of atoms at the steepest point of the potential, shown within the box
in (d), will transition first as the gradient is increased. This is seen in the raw image
(e) as two dark rows in the uncoupled vertically oriented chains.

The manipulation of the state of individual atoms in an optical lattice is an im-

portant goal for optical lattice-based quantum computation. Single site manipulation
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of the hyperfine state in a Mott insulator has been recently demonstrated, with only
a small perturbation to the external state [188]. In our system, we have demon-
strated the manipulation of single pseudospins using light patterns created with a
spatial light modulator. While this could find applications as a single-qubit gate,
it opens the path to more immediate interesting experiments on spin transport in a
strongly interacting system (see [34] for transport of domain wall excitations in our
spin Hamiltonian). For example, a single flipped spin in the paramagnetic state or a
domain wall excitation in the antiferromagnet can be created to observe its diffusion
dynamics, or multiple excitations can be created to study their interaction.

We start with chains on the PM side in a gradient below the transition point and
use a spatial light modulator (Sec. 4.7) to project light with a Gaussian profile along
the direction of the chain, with width corresponding to a few sites, and a flat profile
along the direction perpendicular to the chains, as seen in Fig. 6.13(a-d). The dipole
potential due to the light reduces h, on one side of the Gaussian profile, bringing the
spins closer to the transition point and increases it on the other. We then ramp the
magnetic gradient to the lowest point that induces spin flips, which causes the spins

in a single row to flip as seen in Fig. 6.13(e).
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Outlook

Quantum gas microscopy opens many possibilities for studying ultracold atoms in
optical lattices. We have demonstrated its potential for microscopic studies of quan-
tum phase transitions. In this section, we summarize ideas for further experimental
work.

An interesting extension of our work on studying density correlations in Mott in-
sulators would be to look at these correlations in strongly interacting one-dimensional
gases, also known as Tonks gases. An ensemble of Tonks gases can be prepared in our
system by turning off one of the lattice axes, or reducing it substantially [104, 139].
In the Tonks regime, the bosons cannot pass through each other because of the strong
interactions, and their motion is strongly correlated. The density correlations in such
as a gas should be long-range compared to the exponentially decaying correlations in
the Mott insulator.

We have looked at the dynamics in our system during quick ramps from the

superfluid to the insulator. It would be interesting to study the response of the system
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to sudden jumps of the lattice depth in the superfluid regime. In addition to the
familiar gapless Bogoliubov mode, the superfluid also has another type of excitation
that is gapped, known as the amplitude or Higgs mode. This mode corresponds to
oscillations in the magnitude of the order parameter, or in other words oscillations of
the number squeezing at constant average density. In two dimensions, it is predicted
that this mode is strongly damped [90] because of coupling to Bogoliubov modes, but
that is not the case in 3D.

While we have worked hard on reducing disorder in our lattice, several intriguing
phases can explored by introducing disorder in a controlled way, e.g. Anderson [23]
and Bose glass [54] phases. The use of the spatial light modulator in combination
with the high resolution optics allows us to create arbitrary disorder patterns with
spatial periodicities down to the micron range, leading to large a mobility edge for lo-
calization. In addition, it should be easy to change the disorder on each experimental
cycle to average over disorder patterns. By exploring disorder with different power
spectra, comparisons to theory should be possible.

The optical lattice tilting technique we have used to study quantum magnetism
in an Ising model can be extended in several ways. Tilting by the band gap can
realize the transverse Ising model without a longitudinal field [147]. Tilting by the
interaction in a 2D geometry can lead to different interesting phases depending on
the tilt direction [145]. For example, if the tilt is along one of the lattice axes, the
ground state has alternating rows of double occupancy and no occupancy along the
tilt direction, an ordering that is stabilized by second order processes. Tilting along

the diagonal leads to a checkerboard of doubly occupied sites and empty sites. In
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kagome and decorated square lattices, frustrated models appear including quantum
clock and dimer models, with quantum liquid [15] and solid phases.

Within the magnetic model we studied, we have demonstrated flipping single
spins. It would be interesting to study spin diffusion in the system, or create packets
with momentum and study their interaction. An exciting prospect is studying longer
chains where critical physics can be observed, e.g. measurements of critical exponents
or observation of critical slowdown near the transition point. There have been recent
suggestions on using time of flight methods to put lower bounds on the entanglement
of an arbitrary state of ultracold atoms in a lattice [44]. A direct demonstration of
the “quantum” aspect of quantum magnetism would be measurement of such entan-
glement monotones across the transition to verify that entanglement builds up in the
critical regime.

A current limitation of our imaging technique is that it is currently insensitive to
the hyperfine state of the atoms and measures only the parity of the atom number.
Sensitivity to the internal state would be desirable for proposals to study magnetism
using superexchange [49]. In principle, this issue can be addressed to some extent
by “blowing away” atoms in one of the hyperfine states using resonant light before
imaging [188]. For alkaline earth atoms, the situation is easier because of the presence
of metastable states for shelving one of the hyperfine states. Another possibility that
is implementable in our microscope is to have the atoms in the different hyperfine
states also be in different magnetic states that can be separated spatially using a
magnetic gradient along the direction perpendicular to the 2D plane. If the spin

states are in different planes, they can be distinguished because of the short depth of
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focus of our imaging system. For experiments with a single spin state, similar ideas
can be used to circumvent the parity imaging problem. For example, if we start with
two atoms in the same spin state on a site, they can be made to undergo spin-changing
collisions [190] that put them in different magnetic states that can then be imaged as
just described.

The ability to engineer the potential landscape of the atoms in the lattice should
open new possibilities for lattice cooling. Entropy in lattice systems is usually dis-
tributed in a non-uniform way across the sample because of spatial variations in
the specific heat capacity. For example, gapless superfluid regions can usually store
more entropy than gapped insulating regions, and while increasing the lattice depth,
entropy is expelled into the superfluid regions, a process in which the dynamical is-
sues are important. It may be possible to engineer the potential landscape to have
reservoirs of superfluid regions distributed across the sample to allow for fast ther-
malization [150, 38].

Using a lower resolution lens setup, we have demonstrated in the same apparatus
the use of projection techniques to create vortices in a Bose-Einstein condensate. This
was achieved by transferring angular momentum from a light beam to the atoms
using a Raman transition [29, 4]. The light beam with angular momentum was
created using a phase hologram, which allowed the engineering of vortex patterns
with arbitrary geometry and charge. With our high resolution objective, it should
be possible to project a much denser vortex pattern onto the atoms. Because of the
analogy to quantum Hall physics, the low filling factor regime of atoms to vortices is

interesting to reach [167, 177, 65]. Another exciting related prospect would be the
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direct observation of the binding/unbinding of thermally activated vortex-antivortex
pairs in the two-dimensional gas expected in a Berezinskii-Kosterlitz-Thouless phase
transition [110, 83].

Finally, the quantum gas microscope is a step along the path towards quantum
computation with neutral atoms in optical lattices [30]. Compared to other quan-
tum computing architectures such as ion traps, optical lattices have the advantage
of scalability. Preparation of a Mott insulator in a definite hyperfine state meets the
initialization requirement. The ability to use quantum gas microscopes to manipulate
the hyperfine state of individual atoms [188] or the spin state in the one-dimensional
chains demonstrated in this work satisfies the requirement of single-qubit gates. Two-
qubits gates can be achieved using recently demonstrated Rydberg dipole-dipole in-
teractions [185, 62, 164]. Alternatively, the one-way computation model [153] can
be implemented, utilizing entangled states created through controlled collisions in a
spin-dependent lattice [125]. In both schemes, single-site addressability in a lattice is

necessary.
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Appendix A

Beyond hyperfine encoding of spins

The proposal of Ref. [49] generated a lot of interest in the optical lattice commu-
nity by providing a path for the realization of localized spin Hamiltonians using cold
atoms. The starting point of this proposal is a Mott insulator with one atom per
lattice site, and the spins are encoded in the internal hyperfine state of the atoms.
The spins interact through superexchange with a characteristic energy scale t2/U.
In rubidium, where the scattering lengths for interactions of atoms in the hyperfine
ground states are all approximately equal, the magnetic model realized is a ferromag-
netic Heisenberg model. It is difficult to study quantum magnetism in this model
because most easily constructed additional terms in the Hamiltonian, e.g. S, com-
mute with S - §7. Introducing anisotropy into rubidium’s Heisenberg model can be
achieved with spin-dependent lattices, but heating rates in such lattice are rather
high, making this path incompatible with the low temperatures required for superex-
change ordering. The encoding of the spins in an external degree freedom in Chapter

6 allowed simulating an Ising spin Hamiltonian instead, and achieving interactions at

145



Appendix A: Beyond hyperfine encoding of spins 146

a much higher energy scale. In this appendix, we describe other ideas we have con-
sidered to simulate anisotropic quantum Heisenberg models in magnetic fields using

external atomic degrees of freedom.

A.1 Double well ladder systems

The system we consider is a one-dimensional chain of double-wells shown in Fig-
ure A.1(a). We study the case where there is only one atom in each double-well and
define a quantum spin-1/2 on each double-well by the position of the atom: an up
(down) spin is represented by the atom on the left (right) side of the double-well. The
tunneling matrix element ¢ py, of an atom in the double-well system, controlled by the
barrier height, maps to an effective transverse field that allows spin flips, contributing
a term to the Hamiltonian of the form —h >, S. with h = 2tpy.

We work in a regime where the tunneling along the chain, to is weak; we shall
precisely define what this means shortly. In addition, a potential gradient with
strength A between neighbouring sites is applied along the chain. Because the
tunneling is weak, atoms remain localized in their double-wells, and only explore
neighbouring sites in the chain virtually in second-order processes, where an atom
hops to a neighbouring site and back to lower its energy. This gives rise to a su-
perexchange interaction between neighbouring spins. The resulting energy shifts for
pairs of neighbouring spins in different states can be deduced using second order
perturbation theory from the diagrams shown in Figure A.1(b-c), and are given by
AEy = AE) = —4t2U/(U? — A?) and AE;, = AE;; = 0. The validity of the

perturbation theory requires t¢ < |A|, |U — Al, which can achieved for example by
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Figure A.1: Realization of transverse Ising model in a ladder system. (a) Top: map-
ping of location in the double well to a spin-1/2. Bottom: Ferromagnetic (left) and
antiferromagnetic (right) states. (b) Energy level diagram for calculating superex-
change energy shift for two neighbouring up spins, and (c) and for neighbouring up
and down spins.

picking A = U/2 and t < U. The total resulting Hamiltonian is that of an Ising

chain in a transverse field:
H=Y —JSiSi — hS: (A1)

with J = 82U/ (U* — A?).

This system has two advantages compared to a one-dimensional version of the
model proposed in Ref. [49]. First, the spin detection is already possible with our
quantum gas microscope because it is based on the location of the atoms rather than
the internal state. Second, the sign of the spin-spin coupling can be varied between
ferromagnetic and antiferromagnetic interactions by appropriately choosing A. The

two ground states are shown in Figure A.1(a). The quantum phase transition can be
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studied by starting with a large transverse field obtained with a low barrier within the
double-wells, which is increased gradually to make the spin-spin coupling dominate,
leading to (anti-)ferromagnetic states with spontaneously broken symmetry.

Finally, we describe how such a system can be experimentally prepared. The
starting point is a Mott insulator of rubidium atoms in the |F' = 1,mp = —1) in
our 2D lattice. A holographically projected superlattice along one dimension is used
to decouple the system into an ensemble of ladder systems. Using the techniques
described in [183] involving spin-changing collisions, each double-well can be prepared
to have an atom in |F' = 1,mr = —1) on one side and |F' = 1,mr = +1) on the
other, and one of these states can be subsequently be removed by microwave transfer
to |F' = 2), followed by a resonant light pulse. We start with a magnetic gradient
along the chain and negligible t~. At this point, the system has been initialized with
atoms with all pseudospins pointing up. To prepare an eigenstate of —h > S, a
gradient along the double-well axis is applied, tpy is increased from zero to a finite

value and finally the gradient is adiabatically lowered.

A.2 Encoding spin in vibrational states

In a second scheme, we replace the ensemble of tilted ladder systems with tilted
chains where the spin is now encoded in the lowest two vibrational levels of the axial
lattice. The effective transverse field can be achieved in this case using a Raman
laser. Restriction to the lowest two vibrational levels can be achieved by utilizing
anharmonicity of the onsite potential. The nearest neighbour spin interaction is

again obtained from a superexchange mechanism. In this case, the difference in the
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interaction energy for different nearest neighbour configurations is a consequence of
the dependence of the Wannier function overlap integrals on the vibrational level of
the atoms. There are three possible interaction energies Uy, Uy, and Uy, = Uyg where

the indices denote the lowest two vibrational levels and

U, — Anh2a,

/ () Pty (x) . (A2)

Here ;(r) is a wavefunction of an atom that is in the ground vibrational state of the
2D lattice and in the ¢th vibrational state of the axial lattice, and « is a degeneracy
factor (« = 2 for i # j and o = 1 otherwise.) The axial lattice wavefunctions are
those of a quantum harmonic oscillator, which gives U1 /Uy = 3/4 and Uy, = Up.

The matrix elements connecting the states are

442U
2t*Un
AEy = =——— A4
01 01,10 U2 — A? (A.4)

with ¢ € {0,1} in the first equation, AE denotes an energy shift and 2y 19 allows
Rabi flopping between |01) and |10). The resulting Hamiltonian can be written in

the form of an anisotropic Heisenberg model in transverse and longitudinal fields
H=> —J.8.8H" = J 8| ST — hySi — h.S! (A.5)

with hz = %(AEH - AEO()),JJ_ = —2AE01 and Jz = 2(AE01 - AEO(] - hz) The

coupling parameter ratios are shown in Figure A.2. The perturbation theory used to
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obtain these parameters is only valid away from the resonances at A = Uyg, Uy; and

Uoi.

— A,
—— 1,

Coupling parameter ratio

N

Figure A.2: Dependence of the anisotropic Heisenberg model parameters on the lattice
tilt. The black (red) curve is the ratio of J, (h,) to J,. These ratios are only valid
in the perturbative regime away from any resonances. The transverse field h, is
controlled by the Raman coupling strength.



