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Abstract

Ultracold atomic gases in optical lattices are an ideal platform for studying quantum
many-body physics. The long timescales and isolated nature of these systems makes
them particularly suited for exploring the dynamics of nearly closed quantum systems
and their relaxation towards thermal equilibrium. In this thesis, we demonstrate the
realization of two novel cold atom systems: lattice Fermi gases with non-local inter-
actions and tilted Fermi-Hubbard systems. In both of these systems, we explore the
slow relaxation of density perturbations, either due to kinetic constraints or unusual
hydrodynamics.

The first system we study is a Fermi gas laser coupled to a Rydberg state. For
near resonant coupling of a localized gas in a unit-filled lattice, we realize a quantum
Ising model with transverse and longitudinal fields. We study the out-of-equilibrium
dynamics of antiferromagnetic correlations in this spin system. For far off-resonant
Rydberg coupling, we prepare itinerant Fermi gases with strong non-local interac-
tions. In this Rydberg-dressed regime, we introduce a small Rydberg admixture to
the ground state of the system which results in a laser-tunable soft-core interaction
potential. We use this technique to realize a t —V model with spin-polarized fermions
and study the dynamics of imprinted charge density waves. For strong off-site interac-
tions, the number of bonds is approximately conserved, which leads to slow relaxation
of these states. More generally, the Rydberg-dressing technique is promising for future
studies of extended Hubbard models in multi-component systems.

The second system we study is the two-dimensional Fermi-Hubbard model in the
presence of a large tilt. When the tilt is aligned with a lattice axis, the system exhibits
slow thermalization and subdiffusive charge transport due to modified hydrodynam-
ics where heat transport acts as a bottleneck for charge transport. This work sets
the stage for studying the complete breakdown of thermalization expected for more

generic tilt angles where Hilbert space fragmentation is expected.
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Chapter 1

Introduction

Technologies we depend on in a daily basis, such as high-temperature superconduc-
tors (HTSC) used in MRI machines, work through complicated quantum many-body
phenomena. Even though writing down the underlying equations for such systems
is relatively simple, as one increases the number of particles the problems quickly
become intractable for a classical computer. In the absence of a fully programmable
quantum computer, the only way to study these systems is using a quantum sim-
ulator. These machines act essentially as “analog” quantum computers where only
problems of a certain kind are accessible depending on the nature of the simulator.
The challenge comes in devising the right technologies to use in order to engineer the
desired quantum state to study.

Over the past few decades, ultracold atoms in optical lattices have become an
important approach for the study of strongly-correlated condensed matter systems
[1-3]. Their high tunability and long coherence times make them an ideal platform
for the quantum simulation of these kinds of problems. Particularly, the relatively
recent development of quantum gas microscopy has unlocked the ability to study
equilibrium and dynamical properties of lattice models with unprecedented detection

and control [4]. This development has granted the capability to precisely engineer



highly-entangled quantum many-body states of matter. The experiments described
in this thesis are conducted in a quantum gas microscope for fermions, one of a few
of such instruments around the world coming online in 2015. In our system, we load
ground-state atoms into a two-dimensional square optical lattice. These particles are
able to tunnel between lattice-sites and interact via contact-like van der Waals forces
with a range of only a few nanometers, much shorter than the lattice spacing. The
experiment natively realizes the Fermi-Hubbard model [5] which is widely believed
to exhibit the same physics as HTSC [6]. Through the author’s PhD, our group has
studied various aspects of both the repulsive and attractive phase-diagrams of this
model [7-11].

However, in order to study systems beyond the “plain vanilla” Fermi-Hubbard
model we have engineered novel platforms within our existing system [12-14]. These
new experimental platforms for quantum simulation are the basis for this thesis. We

achieve it in two ways.

Rydberg atoms

The first, and the main focus throughout the thesis, is the addition of a ultravi-
olet laser system for coupling the °Li ground-state atoms to a Rydberg state [15].
This allows us to add a long-range interaction to the existing degenerate Fermi gas.
Through direct excitation, we have been able to realize a many-body spin system [16]
and studied its quench dynamics [12]. Furthermore, through off-resonant excitation
we have been able to realize the technique of Rydberg dressing [17-19]. Essentially,
we create a superposition state of mostly ground state atoms |g) with a small ad-
mixture of the Rydberg state |r) which interacts with other nearby “dressed” states
through a soft-core interaction potential. This allowed us to for the first time realize

an itinerant lattice model with strong non-local interactions [14].



Realizing strongly interacting degenerate quantum gases with long-range interac-
tions has been a long-sought goal in the field of quantum simulation. Many new plat-
forms are currently in development towards this goal including magnetic atoms [20—23]
and polar molecules [24, 25] in optical lattices. Unlike these, other platforms with
long-range interactions like ions [26, 27|, Rydberg atoms [15, 16], polar molecules in
optical tweezers [28, 29] and atoms in optical cavities [30] consist of localized parti-
cles. On the other hand, itinerant quantum systems exhibit an interesting interplay
between interactions, kinetic energy, and quantum statistics.

The combination of motion and Rydberg dressing can lead to novel phenom-
ena and shed new light on the many-body physics of spinless and spinful fermionic
systems with power-law interactions. In 1D, Rydberg dressing leads to quantum lig-
uids beyond the Tomonaga-Luttinger liquid paradigm [31]. In 2D, topological Mott
insulators can be emulated by placing atoms in a Lieb lattice [32]. Compared to
contact or on-site interactions, the long-range interactions between Rydberg-dressed
atoms makes it easier to achieve the low filling factors required for quantum Hall
states [33, 34]. The interplay between hole motion and antiferromagnetism—believed
to be at the heart of HT'SC—can be studied in Rydberg-dressed atomic lattices em-
ulating the ¢t — J, model [35]. In 3D, one can achieve exotic topological density

waves [36], topological superfluids [37], and metallic quantum solid phases [38].

Tilted systems

The second way is the addition of a strong external linear potential or “tilt” gen-
erated with a large off-centered optical dipole trap. This system has allowed us to
explore slow thermalization and heat diffusion in a strongly interacting system near
infinite temperature [13]. Here, the interactions allow for a charge density wave to

quickly equilibrate about infinite temperature generating a heat modulation across



the system. The onset of the ensuing heat diffusion leads to a subdiffusive relaxation
of the correlated density profile.

The physics of generic clean, strongly tilted models can be understood through a
framework of Hilbert-space fragmentation (HSF) [39, 40]. For this class of systems,
the strong tilts generate an effective dipole moment conservation in the system, a
kinetic constraint. Like many-body localization (MBL) [41, 42] and quantum many-
body scars [43, 44], HSF is a mechanism whereby isolated quantum systems can fail
to reach thermal equilibrium after a quantum quench [45]. However, HSF differs
from MBL in that it can exhibit nonergodic dynamics without the need for disorder.
Such systems with a “clean” constraint have been theorized to be good candidates
to behave as “quantum memories” where highly-entangled many-body states can
be preserved [40, 46]. Our experiment explores a special case of a tilted Hubbard
system where Hilbert space fragmentation is not expected, but instead we observe
slow thermalization dynamics described by modified hydrodynamic equations.

The new class of models that can be experimentally realized using Rydberg
dressing unlocks the potential of studying the physics of HSF in an alternative set-
ting [47, 48]. In the limit of very strong off-site interactions, these systems develop
a kinetic constraint in the form of a conservation of “bonds” or “pairs” of atoms in

different sites stifling the dynamics of the system.

Outline

This thesis will mainly focus on the physics of Rydberg atoms and the considerations
needed to design and build a Rydberg dressing experiment. In the first part we will
present the theory and experimental background for our experiments. Ch. 2 will first
introduce a general theoretical background for Rydberg atoms and their properties.
Next, Ch. 3 will present both the theoretical and experimental background for the

successful implementation of Rydberg dressing for °Li systems. This chapter will also



show a full characterization of the Rydberg dressing lifetime and properties. In the
second part we will present each of the pertinent publications related in the context
of this thesis. Ch. 4 presents initial experiments where direct excitation to a Rydberg
state was used to realize a 2D transverse Ising model. The following Ch. 5 shows the
results studying the heat transport and charge subdiffusion of strongly interacting
tilted Fermi-Hubbard models. Finally, Ch. 6 will display experiments where Rydberg
dressing allowed us to for the first time study the dynamics of itinerant systems with

strong non-local interactions.



Chapter 2

Rydberg atoms for ultracold

systems

2.1 Introduction

Rydberg atoms are those excited in a high principal quantum number n state. This
means that the valence electron is in an orbital state very far away from the core
which makes the atom highly polarizable [49]. At long distances, Rydberg atoms

prepared in the same state interact via long-range' van der Waals (VAW) potentials

_GCs

76 where Cj is a coefficient that can be numerically calculated

of the form Vi g =
using second order perturbation theory.

Rydberg atoms have greatly exaggerated properties [49]. For example, they have
relatively long lifetimes in the order of tens of ps and interaction strengths in the order
of hundreds of MHz for typical inter-particle spacings (~ 1pum). Particularly these

two characteristics, make resonantly coupled Rydberg atoms an ideal candidate plat-

form to simulate frozen systems with long-range interactions such as quantum Ising

IThis qualifier will be used liberally throughout the thesis. In AMO, “long-range” interactions
have come to mean any sort of interaction that is not “contact-like” in nature. We are aware that
this term has a more rigorous definition in other fields and apologize for any possible confusion.



models, as the interaction timescale is much larger than their lifetime. In fact, the use
of Rydberg atoms has ballooned over the past half-decade in a variety of experimental
platforms including optical tweezer arrays [43, 50-53], optical cavities [54-56], optical
lattices [12, 57], and many more [15, 58]. In addition, off-resonant coupling to these
Rydberg states can add a small admixture of these exaggerated properties to neutral
ground-state atoms and allow for the simulation of itinerant systems as described in
Ch. 3 and demonstrated in Ch. 6.

This chapter starts with a summary of the theory of Rydberg physics and the sort
of interaction potentials that can be tailored with resonant and off-resonant optical
coupling. There will be a specific emphasis on calculations for °Li atoms, but the
ideas are more general and should be easily translated to any other atom or molecule.
As a disclaimer, there are other good references [59-62] that describe Rydberg atoms
and their interactions in the context ultracold atoms. This chapter will present the

topic as the author has come to understand it over the course of his PhD.

2.2 Scalings of Rydberg atom properties

In order to design an experiment that uses Rydberg atoms, it is important to un-
derstand how their properties scale with principal quantum number which can be
understood from quantum defect theory [63, 64]. In this framework, the binding

energy or the outer electron can be written down similarly to Hydrogen as:

R 1 Ry
Ey =——-= 1 w2 (2.1)

Mcore

Where R, = 3289.8419602508(64) THz [65] is the Rydberg constant, m. is the
electron mass, Mo the mass of the ionic core. For SLi, R* = 3289.541926(2) THz [64]

will end up being a small correction of ~ 0.01% on the bare Rydberg constant R, due



Property Variable Scaling « n.,*

Binding Energy E,. -2
Energy difference from nearby states |En, — En,+1] -3

Coupling to ground-state H2S.np -3/2
Coupling to nearby states ‘M(ni1)57np| , }/L(nil)Dvnp‘ 2
Orbital Radius (r) 2

Rabi Frequency Q -3/2
Radiative Lifetime To 3
Blackbody Decay Lifetime TBB 2
Van der Waals coefficient Cs 11

Table 2.1: Scaling of Rydberg atom properties. Scalings of useful Rydberg atom
properties with principal quantum number to take into account when designing an
experiment [49].

to the large core-to-electron mass ratio”. Furthermore, n, = n — d,; is the effective
principal quantum number with some “defects” that can only be spectroscopically
measured (see [64] for Lithium). In general, these defects vanish for large angular
momenta which in turn start following the original Hydrogen scaling (o< 1/n?).

A summary of important scalings of Rydberg atom properties with the corrected
principal quantum number is shown in Table 2.1. One can derive the more useful
ones from the scaling of the dipole matrix elements (Sec. 2.3) and the binding energy
(Eqn. 2.1). For experiments with neutral atoms coupled through an optical transition,
the Rabi frequency €2 at a fixed optical power goes as the coupling of the ground-
state atoms with the Rydberg state which vanishes at a rate of oc n,73/2. Another
very important property is the lifetime of the atoms which has two main components
as explained in (Sec. 2.4). The radiative lifetime is dominated by the spontaneous
decay to the ground-state (Fig. 2.2b-c¢) and as such goes as the inverse square of such

coupling (o< n,?) while the black-body lifetime has a more complicated relation as

2Since it is a small correction, for some of the coming explanations it will be assumed to be a
negligible difference.



it is dominated by stimulated absorption/emission of a black-body photon and can
be shown to increase quadratically (oc n.?) [66]. Therefore the scaling of the full
effective lifetime will depend on which component it is being dominated by as shown
in Fig. 2.2a. Finally, the Cy coefficient goes as the coupling to nearby states to the
fourth power divided by the energy separation to those states resulting in a very
strong scaling of o< n,!* (Eqn. 2.18). Careful consideration of the scalings of all these
parameters and how they modify the tailored interaction potentials is necessary to

design a successful experiment.

2.3 Transition Dipole Matrix Elements

Since the scalings of Rydberg properties depend mainly in the coupling of different
states through a photon, it is useful to describe the matrix elements of the dipole
operator ft = er which are also referred to as the dipole matrix elements (DME). We
can write the full dipole matrix element between two states in the |n, [, j,m) basis®

as:

,U/a,b — <b| i:l, ’CL> — <nb7 lb7jb7 mb| l:l, |’I’La7 l(“ja, ma> — RTLa,la:jaAlayja,ma (22)

TR i P PR 17

In this formula, R represents the radial component of the DME (Eq. 2.9)

Npslo:Jb

and Al*7*™ represents the angular component of the DME (Eq. 2.11). We are able

1y, J0,mp

to do this, because the full wavefunction is separable in two terms:

7,4, 3:m) = [ty (1)) = [ (1)) © [X15m (0 0)) (2:3)

3Here we have chosen to work in the |n, [, j,m) fine structure basis which is most useful at zero
field. However, the equations shown can be used for other basis as well, one would just need to keep
track of the important angular momenta or use the Clebsch-Gordan coefficients (Table. 3.1).



Where all radial dependence goes in the first term and the second term only has an-
gular components to it. In the following, we will explain how to numerically calculate

each of the DME components and their implications.

2.3.1 Radial component of the dipole matrix element

In order to calculate the radial component of the DME, we need two main ingredients.
First, we need to be able to write down the potential for said electron in a highly-
excited Rydberg state, which we will be able to do using a model potential [67].
Second, we will need to write down Schodinger’s equation in a way that can be

numerically solved using Numerov’s algorithm [68].

Alkali-metal Rydberg atom model potential

For Alkali-metal Rydberg atoms, it is possible to think of the valence electron poten-
tial as a perturbation of the typical Hydrogen —1/r potential. Essentially, the nucleus
and inner bound electrons will constitute a polarizable core with total charge +e and

the valence electron will orbit at some far away distance. This model potential has
the form [67]:
Z c
V(r) = -2t = 22 (11— ) (2.4)

r 24

where Z; =14+ (Z —1)e™ ™" —re” " (ag + ayqr)

Here, a, = 0.1923 is Lithium’s core polarizability, Z is the atomic mass, and the

parameters a;, r. are the ones described in Table. 2.2.

Numerically solving the Schrodinger equation

Using the model potential (Eq. 2.4), the binding energy (Eq. 2.1), and substituting

in the separable wavefunction (Eq. 2.3) we can write down the Schodinger equation

10



Parameter [=0 [=1 [>2
ax 247718079 | 3.45414648 | 2.51909839
as 1.84150932 | 2.55151080 | 2.43712450
as -0.02169712 | -0.21646561 | 0.32505524
ay -0.11988361 | -0.06990078 | 0.10602430
Te 0.61340824 | 0.61566441 | 2.34126273

Table 2.2: Lithium model potential parameters. Parameters for the model
potential shown in Eq. 2.4. The parameters are taken from [67].

in atomic units* as:

(=574 V) Vo) = B () (29
(-3 (3 + 20 ) + 52 v o) = —gst() (20

Here, we have used the fact that x,;(6, ¢) is a spherical harmonic providing an extra
energy term proportional to the angular momentum [. The final step in this derivation
is to substitute the radial wavefunction with a modified function Uy;(r) = 7 (7).
This transformation is useful for two reasons. For one, in spherical coordinates it is
straightforward to normalize as [;° |¢h,;(r)|* 72dr = [;° |Un;(r)|* dr = 1. But also, it
is easy to show that g—:zUnlj(r) =r (g—; + %%) V(1) which allows us to reduce the

Schrodinger equation to:

(—%g—; + 1(12:21) + V(r)) Ui (r) = _%PU””(” (2.7)
(5_:2 B l(l; D (V(r) + 25*2» Upni (1) = 0 (2.8)

4The model potential from [67] is written down in these units so it was used for convenience. It
is important to note that in these units, the energy scale is the Hartree Fy = 2R, which has an
important extra factor of 2 on the usual Rydberg constant.

11
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Figure 2.1: Rydberg atom radial wavefunctions. Radial Wavefunctions (a) and
probability distributions (b) for the °Li 23P;/, (green) and 28P, ), (orange) which
are the states used for pertinent simulations in this thesis. These were calculated
using a model potential [67] and Numerov’s algorithm [68]. Dotted lines correspond
to the average orbital radius of the distribution (7) = (U, m(r)| 7| Vpijm(r)) =
(Vnag (M7 [$n15(7))-

Which is a second order differential equation that can be numerically solved using
Numerov’s algorithm [68] as explained in App. A. Fig. 2.1 shows the numerically
solved modified radial wavefunctions U,,;(r) for °Li Rydberg states 23 P /2 and 28 P /25

which are important for experiments pertinent to this thesis.

Radial DME

Finally the radial component of the dipole matrix element can be calculated by nu-
merically integrating the coupling between two wavefunctions by the orbital radius

operator:

o0
aylay ja -
R:be,lb,j]b = <wnblbjb (7/.) ’ r ‘wnalu‘ja (T)> = /0‘ w’;klblbjb (r)rwnalaja (T)Ter

- /0' U;Lkblbjb (T)TUnalaja (T)dr (29)

In the case of a = b this is exactly the expectation of the orbital radius (7).

The effect of j on these is very small as it only slightly modifies the quantum defect d,,;; [64].

12



2.3.2 Angular component of the dipole matrix element

lasja,Ma

e+ 1t will be useful to rewrite the dipole moment operator

In order to calculate A

in terms of the possible polarization vectors of the coupling photon:
fr = e = ef (Yf1<é, Pl + Y (0, )’ + Vi (0, é)e“) (2.10)

Where Y,”™ are the spherical harmonics and {e~*, €°, e™*} correspond to {c~, 7,0}
transitions respectively. This essentially shows the effect that a photon can have
on the momentum of a quantum state dependent on its polarization. Here, the
component of 7 will only affect the radial component ,,,;(r) of the wavefunction as
explained in the previous subsection. Calculating the full angular component of the

DME will follow from the recursive application of the Wigner-Eckhart theorem [69]

and using the identity [Y;™Y;"2Y"*dQ = \/ CLtDELANEEAY (Ll ly) (b I I ),

A full derivation of this can be found in [70]. The final form of this angular component

can be shown to reduce to:

Ajedama —(_pyiotiatstl=m [(O] 1 1)(20, + 1)(2)a + 1)(2)a + 1)

lb,Jb,mp
L, 1 1, j 1 7.
x " S (2.11)

Ja S jb q —mMy q Mg

Here, the matrix between parenthesis () is a Wigner-3j symbol and the matrix between
{} is the Wigner-6j symbol. The number ¢ = {—1,0,1} corresponds to the type of
transition {o~, 7,07} respectively. Only one of the terms in the Wigner 3j symbol
sum will be nonzero corresponding to the correct change of m in the transition allowed

by the selection rules as shown in Table. 2.6.

13
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Figure 2.2: Lifetime of °Li Rydberg atoms. (a) Spontaneous (7, green) and
black-body (7pp orange) components of the full Rydberg atom lifetime (7 purple) as
a function of principal quantum number n. (b-¢) Transition rate of decay channels
binned by principal quantum number n and divided in spontaneous decay (red) and
black-body stimulated transitions (blue for 7" = 300 K and green for 7' = 77K. (b)
Rydberg state used in Ch. 4. (¢) Rydberg state used in Ch. 6. Data was calculated
using the ARC python package [76].

2.4 Lifetime of Rydberg atoms

Probably only second to the long-range interaction, the lifetime of Rydberg atoms is
their most important property. Certainly it is the one that caused most headaches
for our experiments and which we spent most of our time characterizing and un-
derstanding (Sec. 3.7). The lifetime of Rydberg atoms has two main components:
spontaneous emission down to the ground-state and black-body stimulated decay to
nearby Rydberg states. The second one of these is most problematic and has limited
many experimental realizations of Rydberg platforms [71-75] through non-trivial de-
cay mechanisms. Fig. 2.2 shows the couplings of pertinent Rydberg states for this
thesis divided by both components of the lifetime. It also shows the potentially strong
effect that temperature can have on the problematic decay channels.

It is possible to calculate independently both components of the lifetime mak-

ing use of dipole matrix elements. In the case of spontaneous emission it is well

14



Parameter | [ =0 =1 [>2
Ts 0.8431 | 2.8807 | 0.4781
) 2.9936 | 2.9861 | 2.9963
A 0.051 | 0.040 | 0.058
B 0.097 | 0.078 | 0.148
C 1.991 | 1.712 | 1.934
D 3.852 | 3.610 | 3.783

Table 2.3: Lithium Rydberg lifetime parameters. Parameters for the Rydberg
lifetime shown in Eq. 2.13. The parameters and equation are taken from [66].

approximated by Fermi’s golden rule:

1 8m2e? 9
—=~TI, = —\u, 2.12
To P28 3€0h)\8 |,U P’2S‘ ( )

From this expression, it should be obvious that the scaling of the radiative lifetime will
be cubic (79 o n,?) since we know that the dipole matrix element to the ground-state
scales as fi,pag o 1,2 (Table. 2.1).

For the case of the black-body induced decay, it is also possible to write down
a similar equation were we take into account the distribution of radiation B(A,T)
according to Planck’s law. However, there exist parametric approximations for the

full lifetime of Alkali-metal Rydberg atoms [66]. The form of this equation is:

-1

1 A 214
Tnd  nP B\ _
oxp (31578025 ) — 1

(2.13)

Here {7,0, A, B,C, D} are the parameters described in Table. 2.3, T is in units of
[K] and 7 in units of [ns]. The first term corresponds to the spontaneous emission
and has roughly the expected scaling. The second term is more complicated but in

the large n limit can be shown to roughly have a o< n*? scaling.
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The full scaling of 7 with principal quantum number is a bit complicated as for low
n it is dominated by spontaneous emission 75 but at higher n (and room temperature)
it is dominated by the black-body enabled decay channels (755). We chose to work
with relatively low n in order to not be dominated by 7pp and avoid non-trivial
many-body decay mechanisms. In fact, the states we ended up working with (23P
and 28P) are right around where both components of the lifetime are roughly equal
at room temperature (Fig. 2.2a).

In our experiment, directly measuring 7 is not quite feasible because the Ryd-
berg states have opposite polarizabilities to the ground-state. This means that the
position where the ground-state atoms are trapped in our optical lattice, the Ryd-
berg atoms are anti-trapped leading to strong heating. This was not a big issue for
the experiments explored in Ch. 4 as the timescales of the interaction timescales were
much faster. We can however indirectly measure 7 using the Rydberg dressing scheme
which will be explored in Sec. 3.7. In general, we assumed the values from Eq. 2.13

for which we later found relatively good agreement experimentally.

2.5 Interactions between electric dipoles

As stated in the introduction, the large electron orbit radius of Rydberg atoms gen-
erates an effective dipole moment (p). When you get two Rydberg atoms close to
each other, they can interact via the exchange of virtual photons. If the quantum
states of the two neighboring atoms (e.g. |a) and |b)) have different quantum numbers
such that they can exchange a single-photon ({(a| & |b) # 0), then they can interact
via what are called dipole-dipole interactions (Vy_q = Cs/R?) [77]. However, if the
states cannot exchange a single photon ({a| fx|b) = 0), such as states with the same

angular momentum [/, then they can only interact via a second-order process in what

16



are called van der Waals forces (Vg = Cgs/R®) [53]. Fig. 2.3a shows a Feynman
diagram of this two-photon interaction.

We will focus on the van der Waals interaction as it is most pertinent to the
experiments performed as part of this thesis. However it is also possible to take
advantage of the dipole-dipole interactions by using microwaves to excite multiple

Rydberg states at a time [78-81].

2.5.1 Calculating Cj coefficients with angular dependence

A numerical calculation of the interaction potential is possible using second order
perturbation theory. Multiple theses already contain rigorous calculations [59, 60, 62].
In this subsection, we will present a method to easily calculate Cg coefficients with
full angular dependence.

The van der Waals interaction potential between two atoms |a) and |b) can be

calculated through the formula:

a8V (R) o) |
(2.14)

C
%- 5

a.B£ab Oap
Here, V(R) represents the two-particle Hamiltonian coupling from pair-state |a)®
b) to |a) ® |B) (Fig. 2.3a). dap = Eo + Eg — E, — E} is the energy difference between
the intermediate pair-states and the interacting pair-state®.
Classically, if we have two atoms with parallel dipole moments (aligned to a mag-

netic field for example) p, and pp a distance R apart at an angle 6 (Fig. 2.3b), The

potential V(R) can be written as:

_ Moty 3(pa R)(pe - R)
- R3 RS

V(R) (2.15)

6This is also sometimes referred to as the Forster defect as explained in App. C.
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Figure 2.3: Van der Waals interactions between Rydberg atoms (a) Feynman
diagram of the VAW second order process. (b) Schematic of two Rydberg atoms with
parallel dipole moments.

We can further reduce this expression using the full angular form of the dipole
moment (Eq. 2.10) and removing the spherical coordinate ¢ due to the symmetry of
having the dipoles be parallel” (Fig. 2.3b). Here we will use the notation {i;y, fiio, fti— }
for {o~,m, 0"} transitions of the atom ¢ which define the change Am by the photon
polarization. The following expressions represents the full dipole matrix element with

angular dependence between a pair parallel dipoles:

~

.. R o
V(R,0) = —[(fla—fiv+ + fatfo— + (1 — 3 cos” 0) fiaofino)

TR
3 . P A P ..
— —=sin 6 cos O(jlaoflp + flaoflo— + fatfloo + fla—flso)
V2
3 . . P P N
= 5 810 O(fias fior + fray fio- + flafivr + flaifiv-)] (2.16)
A 1 1. 1. .
V(R,0) = E[ — (1 = 3cos’ 9)(§ua7ub+ + g has [ — flaofivo)

3 . . . P A
-7 sin 0 cos O(flaoflo+ + flaofto— + flatfvo + fla—flo)

3 . N U
— 5 S0 Ofta fios + frafiv-)] (2.17)

"By an external magnetic field for example.
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Since the Van der Waals interaction is a virtual two-photon process where the
atoms return to their initial states, the possible full transitions defining the Cg coef-

ficient have only three kinds of terms with explicit angular dependence:

1. ¢; with dependence (1 — 3cos?6)? for |Am, + Amy| = 0 transitions®. This
term corresponds to transitions where the net angular momentum is conserved.
This means that only for transitions where one atom increases while the other
decreases in its m value or when both maintain the same m. Note that for the

transitions with a change in m there is an extra factor of %.

2. ¢y with dependence —% sin?  cos? 0 for |Am, + Amy| = 1 transitions. This term
corresponds to only one atom changing m value while the other one remains
invariant. The minus sign comes from the asymmetry of this transition due to
the opposite polarizations needed to return only one atom back to its original

state.

9

2 sin* @ for |Am, + Amy| = 2 transitions. This term corre-

3. c3 with dependence

sponds to both atoms increasing or decreasing its m value by 1.

With all these formulas, we can now calculate the Cq coefficient between two states
la) and |b) by adding all the terms corresponding to all possible intermediate states
la) and |B) to ¢, ¢o, or ¢3 depending on which category they fit in. The terms are
calculated in terms of the dipole matrix elements and the state energies through the

formula:

o=y lalalP sl b 218
a,B7#ab Eo + Ep — Eo — L '

Even though forbidden transitions will already have an angular component of

the DME equal to 0 due to the Wigner 3j and 6j functions (Sec. 2.3.2), it is very

8Am, = my — meg and Amy, = my — mg
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important to take into account the selection rules (Table. 2.6) when summing over
all possible intermediate states o and 3. This will greatly reduce calculation time.
It is also important to mention that it only makes sense to calculate Cg coefficientes
between two atoms with states that cannot be directly coupled ((b| ft|a) = 0) in order
to satisfy the perturbation theory expansion. Otherwise, there would be a resonant

channel where the atoms exchange quantum states (dipole-dipole interactions).

2.5.2 (4 values for nP pair-states of Lithium

A calculation for the Cg coefficients of all possible nP pair-states was carried for
values of n = {20,100}. Only the values for positive m values was calculated as it
was found that it was invariant under a sign change of m but not in its absolute value.
We calculated all the ¢, ¢o, ¢3 values (App. B) so we can extract the Cg coefficient

with angular dependence as:

Cs(0) =c1 - (1 —3cos®0)* +¢2 - gsin2 0 cos® 0+ c3 - Zsin4 7 (2.19)

Fig. 2.4 shows the calculated value of Cg/nl! at zero magnetic field. As expected,
the values are mostly constant when taking into account the Cs o< nl! scaling. We
can also note the Forster resonance around n = 32,33 which will be further explored

in Sec. 3.2.2. All interactions for P states of 6Li are attractive.

2.6 Two 2-level Rydberg atom model

The interaction potentials of Rydberg atoms coupled in a light-field are usually sim-
plified to be only two-particle in nature. Higher order corrections of the potentials are
possible to calculate as shown in Ref. [60]. As long as these higher order processes are
not resonant, they are mostly negligible, allowing us to treat the interaction potential

as purely two-particle in nature.
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Figure 2.4: Calculated Cs coefficients for the P states of °Li Van der
Waals interaction coefficients between |nP,1/2,1/2) (red), |[nP,3/2,1/2) (blue), and
|nP,3/2,3/2) (green) Rydberg states. A Forster resonance can be appreciated around
n = 32,33. The Cj coefficient is in atomic units [2R.af].
In this limit, we can first write down a toy model of two 2-level atoms a distance
R apart as shown in Fig. 2.5a. In the Born-Oppenheimer approximation we can
write down the individual Hamiltonians for each particle in the {|g) (ground), |r)
(Rydberg)} basis as:
. . . 0 0 Q/2
Hy = Hz = Hiingie = 5 (Ir) {9l + 1g) (rl) = Alr) {r] = (2.20)
Q/2 —-A
Where €2 is the Rabi coupling of the light field and A is its detuning from resonance.

With this single-particle Hamiltonian in mind, we can write down the full two-

particle Hamiltonian (Fig. 2.5b) as:

H(R) = Hiingle @ 1+ 1@ Hingie + V(R)(I7) (r| @ |r) (r]) (2.21)
0 Q/2 Q)2 0

B(R) = Q)2 —A 0 Q/2 2.22)
Q/2 0 —-A Q/2

0 Q/2 Q/2 —2A+V(R)
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Figure 2.5: Two 2-level Rydberg atom model. (a) Two 2-level Rydberg atoms
coupled in the same light-field with strength €2 and detuning A interact with each
other at a distance. (b) Two-particle energy level scheme for the diagram in (a)
showing the full Hamiltonian within the Born-Oppenheimer approximation.

Where V(R) = —% is the van der Waals potential between two nearby Rydberg

atoms.

2.7 Resonant coupling

In the case of resonant coupling, experimentally we can realize a transverse Ising
model (Ch. 4). In order to obtain Eq. 4.1 one simply needs to take into account

Eqgs. 2.20 and 2.21 with the identities for the Pauli matrices:
op = Ir) (gl +19) (r| and 6. =T—1|r)(r| (2.23)

This will realize a transverse Ising Hamiltonian where the Rabi coupling 2 is a
transverse field 6., the detuning A will be a parallel field &, field, and the interaction
potential will be a 6.6, term coupling the spins. In Ch. 4 we describe an experiment
where we study the quench dynamics of this Hamiltonian and attempt to prepare an
antiferromagnetic phase quenching through a quantum phase transition at different

rates.
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2.7.1 Rydberg Blockade Radius

The only final consideration for resonant coupling is the effect of the so-called Rydberg
Blockade [82-86]. Essentially, the van der Waals interactions between Rydberg atoms
can be quite strong compared to the Rabi coupling of the ground-state to the Rydberg
state. If one atom is in a Rydberg state, the excitation of neighboring atom to a
Rydberg state is strongly suppressed within a blockade radius’ R, = |%|1/ 6. Thus, it
is important to choose the right n Rydberg state such that the relationship between
the inter-particle spacing (lattice spacing ajy in our case) and Ry is suitable for the

intended quantum simulation.

2.8 Off-resonant coupling: Rydberg dressing

The idea of off-resonantly coupling neutral ground-state atoms to a Rydberg state
was first proposed a decade ago [17, 18]. This technique is referred to as Rydberg
dressing. The general idea is that by off-resonantly coupling the ground-state atoms
via a laser with Rabi frequency €2 and detuning A from resonance you can add a
small admixture g = % < 1 of the Rydberg state. This has the effect of adding the
interesting properties of Rydberg atoms to ground-state atoms. In this section we

will explain the basics of this technique and how to derive it.

2.8.1 “Dressed” ground-state

In order to understand the idea of a “dressed” ground-state and its properties we need
only take into account first order perturbation theory of the single-particle Hamilto-

nian flsmglelo shown in Eq. 2.20 for the limit Q < A. In this formalism we can write

9This comes from equating the van der Waals potential to the Rabi coupling in the Q > A limit.
For atoms a distance less than R, away, the |rr) state is so far detuned due to interactions that a
second atom cannot be also excited to the Rydberg state.

10We can divide this Hamiltonian in perturbed and unperturbed components due to the Rabi
coupling: Hgingie = Ha + Hgq.
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down the dressed ground-states as:

(r| Ho |g) /2

m|’f’>:\g>+ A r) = 1lg) +B1r) (2.24)

19) = lg) +

Here, Hq accounts for the perturbation component of the full Hamiltonian and F;
are the energies of the unperturbed component corresponding to the diagonal terms.
This dressed ground-state will inherit the properties of the Rydberg atoms.

In particular the lifetime of the dressed atoms will now be 74 = 727 due to the
probability of the dressed atom to be in the Rydberg state |r). This enhancement
over the bare Rydberg lifetime can be quite sizable depending on the chosen dressing
parameters €2 and A extending the lifetime from the order of tens of us to the order of

ms which is of the order of typical kinetic timescales in ultracold atom experiments.

2.8.2 “Dressed” interaction potential

The dressed atoms will also inherit a long-range interaction potential in the form
of a distance-dependent light shift due to the light-field. This is somewhat similar
to the Rydberg-Blockade effect discussed in Sec. 2.7.1. In order to understand its
properties, we will need to apply again perturbation theory but to the two-particle
Hamiltonian of Eq. 2.22. First, it is easy to show that up to second-order perturbation
in the R — oo limit, the two-particle ground-state is the same as expected from the

single-particle dressed ground-state:

) = 19) ©13) = 1555(19) + 81r) © (1) + B1r) (2:25)
9) = (1= 819} + B(1r) + lgr) + 5 lrr) + O[5 (2.20

Where the term (1+/3%)~! comes from normalizing Eq. 2.24. The interaction potential

will arrive from finding the distance dependent eigenenergy of the two-particle dressed
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ground-states Ej;(R). To find this we need to add corrections up to fourth order in
perturbation of the Hy, component. It is easy to show from geometric reasons that the
first and third order corrections will vanish as there is no path connecting back to the
ground-state (Fig. 2.6a). Therefore, to figure out the second-order correction we have

to realize that there are only two possible paths back to |gg) going back-and-forth to

lgr) or |rg):

N 2 N 2
’<99\HQ !gr>( ‘<99|HQ‘T9>’ 0/2)2 Q2
B ="—5—@ T o 0 - o g) ~2A (2.27)
Egg' — Egr Egg — L

g

Here EZ-(O) correspond to the diagonal terms of Eq. 2.22. In the case of the fourth-order

correction to the energy, we will need to take into account 8 distinct paths as shown

in Fig. 2.6a:
4 “ 4
o NoalHolon| [{agl ol
gg 3 3
(59 - Q) (B9 -ED)
2 ~ 2
‘<99|HQ |gr) ‘(gngnlrml ‘ (99| Ha Irg) ‘ ‘ (99! Ha |gr) ‘
2
(9 - 27)" (589 - B89) (89— 89)" () - )
“ 2
g9l Halor) (arl Falrnd| | (a9l Fa Irg) {r] )|

(50— E0) (5 - £9) (e - B9 (&9 - 57
(99| Ha |gr) gr| Ho|rr) (rr| Ha |rg) (rg| Halgg)

(B - BR) (B - BD) (B - EY)
(99 Halrg) (rg| Ha |rr) (rr| Ha |gr) (gr| Ha |99)

(Eég) _ Eﬁg)) <E§2) _ Eﬁ‘ﬁ)) (E( ) E§9)>

EW _ _ 4(9/2)4 4 (©2/2)* _ 04 - O
99 A3 A2(2A —V(R)) 4A2(2A—V(R)) 4A3

_|_

(2.28)

(2.29)
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Adding Eqs. 2.27 and 2.29 we can get the full eigenenergy of the dressed ground-state
as:

Ez(R) = B + ES) + 010°) = SA (1 + ;2_A <m — %)) (2.30)

From this equation, it is easy to show that in the R — oo (V(oc0) — 0) limit we get
E55(00) = 204c(A, Q). Where d4¢ is the single-particle light-shift:
QQ

Sac(A,Q) = -2 + \/92 Al L (1 - E) + 0[] (2.31)

Finally, with all of these calculations in mind we can solve for the Rydberg dressed

interaction potential:

o 1 % 1
Uar(R) :Eéé(R) — 204c = A3 <A _ 1) - A3 (_2AR6 _ 1)

Uo
Uy(R) = — TR (2.32)

Here we have made some assumptions that are particular to Lithium. As explained
in Sec. 2.5.2, for Lithium-6 P states all van der Waals potentials are attractive which
is why we define V(R) = —% to keep Cg > 0. In general, this derivation would
not work if the detuning A is such that the |rr) potential becomes resonant at any
distance as the Born-Oppenheimer approximation would break down (Fig. 2.5b).
For the simple Rydberg dressing scheme described here, one can only produce an
interaction potential of the same sign as the van der Waals potential. So if the chosen
Rydberg state is attractively interacting so will be the dressed ground-state atoms

and vice-versa.
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Figure 2.6: Rydberg “dressed” interaction potential. (a) Diagram of the two-
particle states, blue lines denote the connections between them through the exchange
of a photon (HQ), red lines denote the 8 possible paths for fourth-order pertur-
bation theory. (b) Eigenenergies of the Hamiltonian in Eq. 2.22 for parameters
Cs = 100MHzum®, A = 100 MHz, and Q = 10MHz; each color corresponds to
a different eigenvalue. (c) Same as (a) but zoomed-in on the dressed ground-state
eigenenergy Ejz;(R) (Eq. 2.30). Here we can appreciate the soft-core dressed inter-
action potential from Eq. 2.32. The top dotted gray line notes the light shift of the
atoms d4¢ (Eq. 2.31) and the bottom one guides the eye for the potential depth Uj.

The potential described by Eq. 2.32 and shown in Fig. 2.6¢ is a soft-core long-range

interaction potential with two main parameters:

4

Q Cs \ ¢
UO = @ and Rc = (ﬂ) (233)

It is interesting to note that the potential depth Uy depends solely on the dressing
parameters A and €). This comes about as an extra correction of the light-shift that
the atoms feel when the strong van der Waals forces effectively decouple the |rr) state.
The effect of the Cy coefficient rather than defining the potential strength will set the
range of the interactions R.. The interaction strength will be reduced from van der
Waals interactions of the order of hundreds of MHz at typical inter-particle spacings
to the order of kHz allowing one to reach non-trivial regimes where the long-range
interaction and kinetic energy scales compete with each other.

This interaction potential is of course an approximation of the true potential that

atoms would “feel”. Numerically diagonalizing the matrix of Eq. 2.22 is quite simple
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Property Variable Scaling ocn.”
fixed A | fixed

Rabi Frequency Q -3/2 -3/2

Laser Detuning A 0 -3/2
Rydberg Admixture I6; -3/2 0
Dressed Radiative Lifetime 8721, 6 3
Dressed Blackbody Decay Lifetime | 3 %7gp 5 2

Dressed Potential Depth Uy —6 -3/2

Dressed Potential Range R, 11/6 25/12

Table 2.4: Scaling of Rydberg dressing properties with n*. Scalings of useful
Rydberg dressing properties with principal quantum number.

and in order to find the interaction potential one needs to calculate the eigenenergy
of the eigenvector which has most overlap with the ground-state |gg). In Ch. 3 we
will explore all the considerations that went into calculating and measuring the true
dressed potential on the atoms. However, this perturbative approximation provides
a very useful tool to design a Rydberg dressing experiment and understanding the

principles behind the technique.

2.8.3 Scaling of Rydberg dressing parameters

Since the Rydberg dressing parameters depend so strongly on the laser parameters (2
and A, it will be useful to rewrite the scalings of these parameters as a function of
principal quantum number n* (Table. 2.4) and as a factor of laser power P at a fixed
n (Table. 2.5).

In terms of experimental realization, Rydberg dressing can be done using a single
UV laser as described in Sec. 3.4. This means that for a given experiment, the overall
power P of the laser will be relatively constant irrespective of the principal quantum

number one is coupling to. The Rabi frequency of a laser light-field goes as the square
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Property Variable Scaling oc P*
fixed A | fixed

Rabi Frequency Q 1/2 1/2

Laser Detuning A 0 1/2
Rydberg Admixture I6; 1/2 0
Dressed Lifetime B2 -1 0

Dressed Potential Depth Uy 2 1/2

Dressed Potential Range R, 0 -1/12

Interaction-to-Lifetime ratio UoTar 1 1/2

Table 2.5: Scaling of Rydberg dressing properties with laser power P. Scal-
ings of useful Rydberg dressing properties with laser power showing the importance of
having a strong dressing light field. Particularly, the interaction-to-lifetime increases
irrespective of which parameters A or § are fixed.

root of the laser power given by the relation:

4e2 P
0=,/ —L 2.34
eowh%wgms’ P (2.34)

Where wg is the waist of the laser. With this relation and the Rydberg property
scalings from Table. 2.1 in mind, we can write down corrected scaling laws for the
the Rydberg dressing properties in two limits: one keeping the detuning A from reso-
nance constant and one keeping the Rydberg admixture S constant. These limits are
useful to think about the interaction potentials one can engineer using the available
parameters. The scalings are summarized in Tables. 2.4 and 2.5.

The first takeaway from these tables is that the interaction range R. is most
susceptible to principal quantum number and increases roughly quadratically while it
is essentially independent of power. This should not be a surprise as the Cg coefficient
depends very strongly on n* as well. This means that for a known achieved laser

power P one would only have a range of nP states to chose from in order to get

29



a desired interaction potential for a fixed inter-particle spacing (such as an optical
lattice spacing).

The second takeaway is that power matters. Essentially all parameters scale
favorably with power P. Particularly the figure of merit of the interaction-to-lifetime
ratio Uy, which benchmarks the coherence of the system. For any experimental
realization it is very important to maximize the power of the available laser. Much
work of this thesis went into maintaining the correct working of our ultraviolet laser
(Sec. 3.4) to maximize its power throughput but also to stabilize it and avoid extra
decoherence mechanisms due to intensity noise. It is also noteworthy that the Rabi
frequency also depends strongly on its focus waist wg, carefully designing the optical
setup will be important and careful considerations should be made to understand how

it affects the achievable simulation models as explained in Ch. 6.

2.9 Calculating Rydberg properties using Python
packages

While the perturbative limit is sufficient to understand a great deal of the properties
of Rydberg atoms for the purpose of planning an experiment, more complicated cal-
culations are required to fully understand the interaction potentials. Nowadays there
are two Python packages that simplify this task and which were used for this thesis:
the Alkali-Rydberg Calculator (ARC) [76] and Pair Interaction (PI) [87]. There are

advantages to each package and we used them where their strengths were most useful.

Alkali-Rydberg Calculator

The ARC package [76] provides a very convenient and well documented package
with great functionalities. However, it lacks the ability to solve for the Hamiltonian
with strong magnetic fields which is necessary for our experiment. Nevertheless, it
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is incredibly useful for properties that are invariant under magnetic field such as
lifetimes and decay channels. It was however an invaluable resource to plan for our
experiment as shown in Fig. 2.2 and to compare for early perturbative calculations

for pedagogical purposes.

Pair Interaction

The PI package [87] does provide the capability of high magnetic fields with the
caveat of a more wanting documentation. A great deal of work was done to decipher
the various and very useful functions in order to build scripts used for analysis and
exploration. In the end, this package was what allowed us to best understand the
interaction potentials of our system and the one we relied on the most. All of the
calculations pertaining the pair potential calculations presented in Ch. 3 and Ch. 6
were performed using this package. A very useful capability of this package is that
it can save the overlap of a particular pair potential with the Rydberg states in
In, 1, 7, m) basis providing a very useful tool to calculate dressing potentials as shown
in Sec. 3.3. The only caveat is that one needs to take into account the Clebsch-Gordan
coefficients (Table. 3.1) to transform into the high magnetic field |nl, m;, ms, m;) basis

(Sec. 3.1.1).

2.9.1 Multi-polar Expansion

Solving for the full Hamiltonian between two Rydberg states involves taking into
account many nearby pair states and how their couplings modify each other. In
the previous sections, a lot of work went into describing the perturbative calculation
with only dipole-dipole couplings. This is sufficient for large distances. However
for close distances, which are most important for experiments, taking into account
higher order processes is needed. We will refer to this multi-polar expansion in terms
of two variables: x = 1,2,... for dipole, quadrupole, etc. and p = K1 + ko + 1
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Low Field High Field
{iO,Q,...m for Kk even {i0,2,.../<o for k even

Al = Al =

+1,3,...k for k odd +1,3,...k for k odd
As =0 (same) As =0and Am, =0
Aj =40,1,...kand j+ 7 <k Al =0and Am; =0

Am; ==£0,1,...k Am; =40,1,...k

Table 2.6: Selection rules on multi-polar expansion. Selection rules for matrix
elements of spherical harmonics with multi-polar expansions in the low and high
magnetic field limits. The parameter k = 1,2, ... refers to dipole, quadrupole, etc.
expansions [87]. The difference arises from the change of useful quantum numbers
according to the Paschen-Back effect discussed in Sec. 3.1.1.

where the index refers to each atom considered in the pair calculation. For example,
p = 3 (minimum) implies a calculation with only dipole-dipole interactions. This also
presents an expansion of the usual selection rules:

Particularly the PI package also allows for the addition of a diamagnetic term to
the full Hamiltonian. No appreciable difference in the pair-potentials, memory usage,

or speed of the calculations was found in our studies so we always had this term on.

Implementation on Pair Interaction

To solve the pair-potential Hamiltonian, you first define a specific pair-state you are
interested in the |n, [, 5, m) @ |0/, ', j',m’) basis. Constraints on the amount of states
that will be taken into account for the calculation need to be defined in order to
improve speed and memory usage. These constraints are the range of energies for the
single Rydberg state AE;g., the range of principal quantum number An, the range
of angular momenta Al, and the range of energies of pair states to consider AE,;,.
The values selected for these should be sufficient such that we are taking into account
all the relevant states for the selected multi-polar expansion p as expected from the

selection rules in Table. 2.6. For our calculations, we fixed An = 3 and Al = 3;
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this gave us a sufficient breadth of states to get correct results. The ranges in the
energies were a bit more important to set correctly as they are the most important
constraint on the size of the eigenbasis. In principle AFEg;,q. is always larger than
AFE,.iy because some pairs of states of very different energies will form a pair state
that is very close to our target states. For calculations on |28P) pair-states we
found that AFEg;,g. = 500 GHz and AE,,;, = 200 GHz was sufficient. However, for
larger principal quantum numbers we reduced this as the density of states increases
according to the binding energy Eq. 2.1.

We can also define the limit of the multi-polar expansion p, the angle of interaction
0, as well as electric E and magnetic B fields as vectors. Finally, we have chosen a
reasonably spaced grid of distances that enable us to see the features of the potentials

at the distances important for our lattice.
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Chapter 3
Rydberg dressing of YLi

The previous chapter introduced the physics of Rydberg atoms and their properties.
The technique of Rydberg dressing is also discussed and its potential impact as a
quantum simulation tool is evident. Our group is not the first to develop this tech-
nique. Other groups have successfully implemented it in heavy atoms such as Rb and
C's with impressive results realizing many-body dynamics and electrometry measure-
ments in frozen systems [55, 71-75, 88-91]. However, Rydberg dressing of itinerant
systems has been an elusive goal. This limitation has been mostly due to non-trivial
decay mechanisms limiting the achievable lifetime of the atomic sample as will be
discussed in Sec. 3.7.

In our experiment, we set out to develop the technique of Rydberg dressing for
the fermionic species of Li. The main driver for this endeavor was the opportunity
to take advantage of lithium’s light mass in order to engineer itinerant systems with
long-range interactions. We have successfully implemented such a system in the form
of at—V model as detailed in Ch. 6. In this chapter, we will cover both the theoretical
and experimental considerations that were taken for the successful implementation of

this technique in °Li.
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3.1 Rydberg dressing scheme

Our experiment was designed to be a very flexible quantum simulator of the Fermi-
Hubbard model with single-site resolution [92, 93]. However, Rydberg dressing was
not considered in its original design. This presented some constraints both in technical
difficulties (e.g. window coatings) and in terms of the actual Rydberg dressing scheme
(e.g. polarization, state, etc.). °Li has a broad Feshbach resonance in the ~ 700—850G
range [94]. As such, our experiment includes a set of coils that can provide very
stable fields up to these large magnetic fields in order to tune the interactions of
the system [92]. The existing protocols to generate low-entropy many-body states of
ground state atoms operated at relatively large magnetic fields of ~ 600 G. Given
this, we considered the idea of performing Rydberg dressing at such fields, finding
that the strong magnetic dispersion of Rydberg atoms (Fig. 3.1b) provides a “cleaner”
realization of the basic Rydberg dressing ideas explained in Sec. 2.8. This is in contrast
with previous realizations of Rydberg dressing in other species which focused on very

low magnetic fields in the mG range [55, 75, 90].

3.1.1 Lithium states at high magnetic fields

Before going into the behavior of specific states with high magnetic fields, it will be
useful to have in mind the selection rules Al = 0 and Am; = 0, £1 (for m, 0 photons
respectively) at high fields (Table. 2.6). This means that ‘251 /2) ground-state atoms
can only be connected to a [nP) Rydberg state under a single-photon dressing scheme.
Moreover, a single-photon cannot change the nuclear moment m; or spin mg of an
atom either. Therefore, the specific final |m;, ms, m;) state will be defined only by

the chosen initial hyperfine ground-state and the polarization of the photon.
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Paschen-Back regime

At low magnetic fields, the hyperfine coupling dominates over the Zeeman coupling
and the “good” quantum numbers are F = J+ I and its projection along the
magnetic field. At very large fields, also known as the Paschen-Back regime, the
field overpowers all angular momenta (i/, S, and I ) cross-couplings aligning them.
This presents a change in the “good” quantum numbers to the |m;, mg, m;) basis for
the particular projection of each momenta to the magnetic field'. In this limit, the
eigenenergies are defined by the initial fine- and hyperfine-structure splittings (AErg

and AFEyrg) plus a magnetic dispersion term we can write down as:
AEpp = Bup (gimy + gsms + grmy) (3.1)

Here, B is the magnetic field; up ~ 1.4 MHz/G is the Bohr magneton; and g, ~ 1,
gs ~ 2, and g; ~ —0.0005 are the g-factors of their respective angular momenta [95].
Note how the nuclear spin I g-factor is much smaller than the others. Therefore, for
Rydberg atoms were the initial hyperfine-structure splitting is very small, states with

different m; are essentially degenerate.

Ground-states

Fig. 3.1a shows the full energy dispersion of the ‘251 /2> ground-states of °Li up to a
field of 500 G. In our experiment we worked mostly at a field of ~ 595G. At this
strong field, the ground-states are not quite yet in the Paschen-Back regime. Finding
an analytical solution of the full state for °Li ground-states is possible [96]. The

existing protocols of our machine made it simpler to work with states |1) — |3). At

IThroughout the thesis we also refer to this basis as |nl,m;, ms, m;) to describe the full state.
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Figure 3.1: SLi }251/2> and |28P) states vs. Magnetic Field. °Li atomic states
dispersion with magnetic field for (a) |25)/2) ground-states and (b) [28P) Rydberg
states. Each color corresponds to a different state. |k) and |k*) states are labeled
by increasing energy at high magnetic fields and shown in the |m;, ms, m;) basis.
The Rydberg states do not specify a m; value as its energy separation is negligible
compared to ground-states. Note how the Rydberg states reach the Paschen-Back
regime much quicker than the ground-state atoms.
these fields, states |1) and |2) are g 98% pure while state |3) remains completely pure
at all fields? in their respective |m;, my, mz) basis.

With this in mind, we prefer Rydberg dressing protocols where the initial state is
|3) to avoid complicated effects of dressing mixed states. However, experimentally we
did not find any difference in the lifetime with initial hyperfine ground-state. In fact,

most of our characterization of lifetimes and interaction was done starting in the |1)

(and |2) in the case of Ramsey interferometry) state.

Rydberg nP states

Fig. 3.1b shows the full energy dispersion of the |28P) Rydberg state of SLi up to

a field of 5 G.The dispersion of different |nP) Rydberg states is expected to be very

ZState |6) is also pure at all fields, but pumping atoms to this highest energy ground-state is a
bit complicated. Future possible protocols though might benefit from using this initial state.
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similar. The energy levels were calculated using Pair Interaction [87]. As expected
from Eq. 3.1, the Rydberg states disperse according to their total angular momentum
projection onto the magnetic field direction. The main difference with ground-state
atoms is that the hyperfine-splitting is much smaller leading to states with different
my to be closely degenerate and unresolved. This leads to the simplification that
Rydberg states with the same m; and mg quantum numbers but different m; values
will still interact via a van der Waals interaction potential as described in Sec. 2.5.1.
We can make this assumption because the states being closely degenerate leads to
very long timescales for the exchange of a photon due to the Heisenberg uncertainty
principle®. For the following discussions, we will number the Rydberg states with
increasing energy and differentiate them from ground-states by adding an asterisk
|k*) to them.

With the selection rules in mind (Table. 2.6) we will note that ground-states
|1) — |3) can only connect to Rydberg states |1*) — |3*) via a single-photon transition
dependent on its polarization. The m; value of the Rydberg state will be defined
by the specific ground-state used. The strong dispersion of the states with magnetic
fields does provide an advantage over the Rydberg dressing schemes of other groups
since at our typical fields the closest Rydberg states in a different hyperfine state are
2 x pup x 600G ~ 1.7 GHz away. This allows us to think of any dressing scheme as
connecting mainly to a single pair-potential with “mostly” van der Waals character

(Sec. 3.3) up to small corrections and avoided crossings.

Basis transformation

As explained in Sec. 2.9, the Pair Interaction package used to calculate the pair-
potentials works in the |j, m) basis which is only really useful at or near zero magnetic

field. For this reason, it is useful to calculate and write down the Clebsch-Gordan

3Also, a single photon cannot change the m; value of the atom as seen in Table. 2.6 and higher
multi-polar couplings are exponentially smaller in amplitude.
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|9, m)
Lz=2) [a+3) [15:-9) |15 =9) [[5:+3) | 1549
1%) = |-1,-3) 0 0 1 0 0 0
2= o-P| & | o | o 20 | o
LY=L= o 2 0 0 < 0
Sl =]-L+3) || /2 0 0 = 0 0
5) =] 0,+3) 0 7 0 0 /2 0
6%) = [+1,+3) 0 0 0 0 1

Table 3.1: Clebsch-Gordan coefficients between |m,;, ms) and |j, m) basis. Note
that the rows correspond to the Rydberg states |k*) in descending order.

coefficients between the basis. Table. 3.1 shows these coefficients. One interesting
property to point out from the table is that states |1*) and |6*) are pure at all magnetic
fields. This makes them possible ideal candidates for future dressing schemes to
avoid overlaps with other states at short distances. It is important to note that Pair
Interaction can take into account extra terms in the Hamiltonian such as multi-polar
expansions and diamagnetism. As such, when comparing the calculated pair-states
in the |7, m) basis, we find numerical deviations from the values of Table. 3.1 on the

order or ~ 1%. This is not true for the pure states.

3.1.2 Dressing scheme

The configuration of the Rydberg excitation light used in our experiment only allows
us to excite the Rydberg transition with linear polarization. This is due to the
strong magnetic field pointing in the vertical direction z while the laser is pointing in
direction y as shown in Fig. 3.8. This configuration makes it such that the polarization
of the laser light is only well-defined when we have vertical linear polarization (z).

Anything else will be some superposition of the possible polarizations. For example,
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if we sent horizontal polarization, the light “seen” by the atoms will be equally in

o™ and o~. For any arbitrary polarization and laser pointing, one only has to care

that for the quantization axis along z, the polarizations are defined as 7° = 2 and
ot = \/iﬁ (z £ ¢). Thus all you need to do is decompose the incoming polarization

into this basis.

With this simplest configuration, the most natural dressing scheme is to connect
ground-states |1) — |3) with Rydberg state |2*) using a vertically polarized 7 photon.
It would be ideal to use state |3) due to it being pure under magnetic field fluctua-
tions. However, for a few measurements such as Ramsey spectroscopy (Sec. 3.8) it is

necessary to use states |1) and |2) to avoid resonant excitations.

Possible improved schemes

As previously mentioned, there are two Rydberg states that remain pure for all fields
and as such have less overlap with neighboring states. Ideally, we could think of two
“perfect” dressing schemes: [3) — [1*) and |6) — |6*). However, in order to do this
we would need to either send the UV laser from the bottom (technically challenging
in our setup) or generate a magnetic field along the lattice direction y so that circular
polarization can be well-defined. The second option presents its own issues, such as
realistically only being able to produce < 10G with our current setup. In addition,
with the quantization axis pointing along the lattice plane the interactions will be
asymmetric (Sec. 2.5.1).

Another option, is to use the horizontal polarization and take a hit of \/Li in the
Rabi frequency. Though one would also need to take into account what the effect of
the opposite circular polarization will be. In this particular case, a potentially very
viable scheme is |6) — |6*), as the extra o~ light will have minimal effects since the

dressing detunings need to be positive farther away from state [4*).
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3.2 Pair-state potential calculations

In Sec. 2.9.1 we described the methods for calculations made using Pair-Interaction [87].
Now, with a better understanding of the dressing scheme and the high field physics of

Rydberg atoms, we performed a lot of exploratory calculations to better understand

the dressed potentials and lifetime limitations.

The types of potentials that we are most interested in are the ones made by
pairs of the same Rydberg state |nP) ® |nP). Using the Pair-Interaction package we
built scripts that, for a desired principal quantum number, calculated all nearby pair-
states and kept track of their overlap with all |k*) ® |m*) pair-states® as a function
of distance.

Fig. 3.2 shows one of these calculations for the |28 P) ® |28 P) states at a magnetic
field of 600 G. Here, we can appreciate the huge “jungle” of nearby states with
different quantum numbers. While most of them have no overlap with the target
states, they do cause avoided crossings that need to be taken into account when

calculating dressed potentials as detailed in Sec. 3.3. It is also important to note that

4We are most interested in pair-states with the same components (e.g. |k*) ® |k*)). However,
keeping track of mixed states is useful for molecular potentials.
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Figure 3.3: |2*) ® |2*) pair-state at 600 G vs. principal quantum number. The
|2*) @ |2*) pair-state at a 600G field is shown for |23P), |31P), and [40P) Rydberg
states. The strength of the color denotes the overlap with the |2*) ® |2*) pair-state.
Note how the “jungle” of gray lines gets farther out, possibly leading to non-trivial
loss mechanisms due to resonant couplings.

we observe the expected dispersion from Eq. 3.1 as Ejg«ygpm+)(00) = Ejry 4+ Ejppey. At
600 G this separation is ~ 1.7 GHz which is quite large compared to typical dressing
detunings A $ 100 MHz allowing us to connect individual hyperfine ground-states
with a single state of the Rydberg fine-structure.

As we decided to use a dressing scheme with vertical linear polarization, the rest

of the discussion in this section will focus only on |2*) ® |2*) states.

3.2.1 Pair-states vs. principal quantum number

A first important consideration is what specific |[nP) Rydberg state to connect to.
This is by far the biggest knob in our experiment. Originally, from the scalings shown
in Table 2.4 we estimated that the |31P) state would be an ideal candidate for our
intended scheme. This would be a sufficiently strong interaction strength to lifetime
ratio and a suitable range. However, we quickly found that the lifetime of the atoms

was not close to the expected Rydberg dressed lifetime. We explored the dependence
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with other principal quantum number states and found that the lower we got, the
closer the measured lifetime was to the expected Rydberg dressed lifetime’.

Fig. 3.3 shows the calculated |2*) ® |2*) pair potentials for different principal
quantum numbers. The “clean” van der Waals picture of the Rydberg potentials is
only true at low principal quantum numbers. As one increases this knob, the “jungle”
of lines with all of their overlaps and avoided crossings gets farther and farther away:.
It is our understanding that one component of the non-trivial loss mechanisms we
encountered in our system is related to resonant coupling with nearby pair-states
rather than black-body decay. This was evidenced by our finding that lower principal
quantum numbers such as |28P) had increased relative lifetime to the theoretically
expected one. Particularly damaging should be cases such as the ones shown in the
second and third panels of Fig. 3.3 for [31P) and |[40P) where these nearby pair states

are at typical inter-particle spacings in our lattice.

3.2.2 Pair-states vs. magnetic field

Another big knob in our experiment was the magnetic field. As explained before, we
did most of our characterization and all of our experiments at a ~ 592 G purely due
to convenience on the existing protocols. After some characterization, we found that
the range of 300 — 600G was good for two reasons. First, these fields are large enough
that we can simplify our understanding as only coupling to the desired fine-structure
Rydberg state. Second, at larger fields we measured reduced lifetimes (Fig. 3.19)
which we attribute to having the strong magnetic dispersion bringing resonant pair-
states near the target state leading to similar decay mechanisms such as the ones
limiting large principal quantum numbers as explained in the previous subsection.

Fig. 3.4 shows the calculated |2*) ®|2*) pair potentials of |28 P) for different magnetic

5This was before our better understanding came from the Pair Interaction simulations.
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Figure 3.4: |2*) ® |2*) pair-state of |28P) vs. magnetic field. The |28 P) Rydberg
state [2*) ® |2*) pair-state is shown for B = 10 G, 600 G, and 1000 G. The strength of
the color denotes the overlap with the |2*) ® |2*) pair-state. At low fields, |k*) states
are not yet well separated leading to many close lines with non-vanishing overlaps. At
very high fields, the magnetic dispersion is so large that many more lines are around
the desired target state.

fields. We eventually used the pair-state shown in the second panel of this figure for

our experiments described in Ch. 6.

3.2.3 Forster resonances

While not used in our system, as part of this thesis we studied the possibility of
dressing Li near a Forster resonance [97-103]. In Sec. 2.5.1 we described the van
der Waals character of Rydberg pair-potentials (e.g. labeled |a, b)) as a second order
perturbation theory effect due to a virtual two-photon exchange to a different pair-
state (|a, 5)). From Eq. 2.14 we understand that the strength of these couplings
comes not only from the dipole matrix elements between the states, but also from the
energy difference dog = Ejopy — Ejap) between the states. We call this energy difference
a Forster defect.

A Forster resonance appears when, for some parameter values, a particular defect
dap vanishes leading to heavily modified pair-state potentials. This can happen at zero

field for particular principal quantum numbers n. Fig. 2.4 shows how the numerically
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calculated Cy coefficients diverge around |33P). However, the previous sections show
how magnetic fields also have a strong effect on the nearby pair-states. In App. C
we show calculations of the Forster defects and resonances of °Li and their behavior
at different magnetic fields. In principle, one could use this knowledge to engineer a
dressing scheme to a “molecular” potential with a valley right at the lattice spacing

allowing for much more favorable dressing potential scalings as proposed in Ref. [102].

3.3 Full Rydberg-dressed potential

In Sec. 2.8 we worked through the derivation of the Rydberg-dressed potential between
two ground-state atoms off-resonantly coupled to Rydberg states which interact via
van der Waals forces. Through this derivation we arrived at a soft-core interaction
potential of the form shown in Eq. 2.32. We do mention that this potential is an
approximation valid only in the 8 — 0 limit. This is not a problem because numerical
diagonalization of the 4 x 4 matrix of Eq. 2.22 is simple enough to extract more
realistic potentials in terms of specific parameters. However, in order to find the
“true” interaction potential between two %Li atoms in our optical lattice we need to
take into account a few extra considerations. In this section we will describe each of
these considerations and how to arrive at the full Rydberg-dressed potential shown

in Fig. 3.5.

3.3.1 Overlap with nearby pair-states

The simple van der Waals picture is not exactly correct as evidenced in the figures
of Sec. 3.2. For the true Rydberg pair-state landscape there is non-zero overlap
with other nearby pair-states which depend on the separation between the atoms.
Particularly at close distances, there are overlaps of the target state (|r) ®@|r) = |r,r))

with multiple other nearby pair-states |[p(R)). In order to extract a more realistic
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Figure 3.5: Full Rydberg-dressed po-
tential. Different degrees of approxima-
tion for the calculation of Rydberg dressed
potentials between |1) ground-state atoms
connected to the |28P) Rydberg state at
{1 592 G and parameters ) = 27 x 766 MHz
and A = 27 x 35 MHz. First we have the
“simple” dressed potential from Eq. 2.32
for a van der Waals potential with Cy =
21 x 90.19 MHza;%.  Second, the po-
| tential taking into account overlaps with
nearby pair-states (Eq. 3.3). Finally, we
also take into account the wavefunction
-10 , ' . spread of Fig. 3.6. This figure corresponds

1 2
Position (aat) to Fig. 6.1b(inset).

Energy / h (kHz)

Simple Cg potential
Using overlaps
Using overlaps and wavefunction spread  ©

dressed potential, we need to take into account the dressing of our ground-state
atoms with all of these other states taking into account the individual overlaps with
the target state. In the following, we will denote the overlap as o?(R) = (r,r|p(R)).

In order to do this, we are going to numerically solve the dressing Hamiltonian

from Eq. 2.21 for each individual pair-state potential V?(R):

H? = Hungie T+ 1® Hyingie + VP(R) 1) (r @ |r) (1] (3.2)

Here, the pair potentials V?(R) correspond to the calculated eigenenergies Ej,) (R)
subtracting the offset corresponding to the bare energy of the target state £, (c0).
The parameter A is the same as the intermediate states |g, ) and |r, g) are not affected
by the overlaps. The superscript p denotes each pair potential.

We can numerically solve for all dressed potentials UX (R) by diagonalizing the
individual Hamiltonians H? and subtracting the expected light-shift offsets. Finally,

we can add all of these up taking into account the distance-dependent overlaps in
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order to extract:

Un(R) =) _|o"(R)[* UL (R) (3.3)
p

As we can observe in Fig. 3.4b, if we follow the overlap, we get essentially a simple
van der Waals potential up to some avoided crossings. Therefore, we expect that
the dressed potential taking into account overlaps from Eq. 3.3 will be very similar
to that of Eq. 2.32. In Fig. 3.5 we observe exactly this where the “full” dressed
potential has only small differences with the one calculated using the extracted Cg
coefficient. However, now we can appreciate the effect of crossing “resonances” at close
distances where avoided crossings with the main pair-state happen. These resonances

are mostly sharp enough to not affect the overall potential.

Engineering repulsive interactions by dressing on a large avoided crossing

In general, the calculations made using the python packages seem to capture quite
well the true nature of Rydberg pair potentials. Recently, Ref. [103] performed spec-
troscopic measurements of molecular bound states created by an avoided crossing of
two coupled Rydberg pair-states of 8"Rb. What they found is that they could pre-
dict with very high precision the energies of the molecular bound states even taking
into account the small modification due to an avoided crossing with a non-coupled
pair-state. These results mean that we can trust and use the calculations from the
python packages to “explore” the Rydberg parameter space. Potentially opening the
door to exploit “exotic” Rydberg dressing schemes which can provide more favorable
scalings or tunability.

In Ref. [102] one of such schemes is described where one would dress close to a

valley (or hill for attractive potentials) of a molecular potential like the one explored
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in Ref. [103] positioned approximately at 1 aqy. Depending on the height of the
valley, one can expect much more favorable interaction-to-lifetime ratios.

However, we do not need to limit ourselves to molecular potentials between coupled
pair-states. As shown in Fig. 3.2 the size of the avoided crossings with non-coupled
states can be quite sizable. One could imagine a way to engineer a dressed potential
with opposite sign to the natural van der Waals interaction by choosing the detuning
such that it falls right in the middle of one of such avoided crossings. As long as
resonances to pair-states with non-zero overlap are avoided, the Born-Oppenheimer
approximation is still valid. Depending on the position R of the crossing, one could
tune repulsive interactions for °Li atoms or even more exotic potentials where the

nearest neighbor and next-nearest neighbor interactions are of opposite sign.

3.3.2 Wavefunction spread in optical lattice

The second consideration that we need to make is that since °Li is so light, the atoms
in our optical lattice have a significant wavefunction spread and we cannot think
of them merely as point particles. To first order, we can write down the Wannier

functions of the atoms in our 2D lattice as a separable wavefunction ¥(z,y,z) =

T

W(x)(y)(z) where ¥(r) = W exp <—é> are the ground-states of a quantum
harmonic oscillator. For these wavefunctions, the spread o, = \/% depends on the
mass and the trapping frequency in the particular dimension.

In our experiment, our atoms are trapped in a mixture of a 2D optical lattice in
the x — y plane with a;, &~ 752nm and a tightly confined vertical lattice to keep the
atoms in the 2D regime. In the particular case of the experiments described in Ch. 6,
the lattice trapping frequencies were w,, ~ 27 x 54kHz leading to spreads in the
x — y plane of 0., ~ 124nm ~ 0.17 aju. The vertical lattice trapping frequency is

0, ~ 21 x 1TkHz leading to o, ~ 222nm = 0.3 a;,;. These wavefunction spreads cor-
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respond to the standard deviation of the approximately Gaussian probability densities
for the positions of each atom at a lattice site.

We are interested in finding the probability distribution P(|r; — ra|) of the dis-
tance between two atoms at particular lattice sites. While the problem is easy to state,
for 3D probability distributions (even Gaussian ones) it is not analytically solvable.
The 1D case is analytically solvable though. To overcome this issue, we employ a
Monte-Carlo method where we randomly generate positions r; and ro and calculate
the resulting distance |r; — ra|. We average and bin about 105 samples and extract a
discrete probability distribution for the distance between atoms. Fig. 3.6 shows this
probability distribution for the 3D and 1D case 1 ajy apart along with the known 1D

5r _ (r1i—r2—aieud)?

expected distribution Pip(|ry — r2|) = 570= exp ( T) to benchmark the

method.

We find that the average distance between nearest neighboring atoms is actually a
bit larger than 1 a;,; which is expected due to the probability spread in the directions
perpendicular to the separation. This will have the effect of reducing the “effective”
interaction that nearest neighboring atoms feel°. We can repeat this method for

all other possible distances of the atoms in the lattice and multiply their probability

5Depending on the “steepness” of the potential, it can also have the effect of increasing the
interaction strength as is the case of the next-nearest neighbor interaction of Fig. 3.5.
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distributions with the “full” dressed potential of Eq. 3.3 and find the actual interaction
energy between dressed atoms in our lattice. The pink points of Fig. 3.5 show these
interactions which were also used to benchmark the Ramsey spectroscopy (Sec. 3.8
and Fig. 6.3c-d).

It is important to mention that this method assumes an isotropic potential. As
described in Sec. 2.5.1 the van der Waals potential depends on the angle 6 between
the aligned dipoles and the separation vector R. This affects the particular pair-state
potentials and overlaps as well and it is possible to take the angle # into account for
the calculations. In principle, it is possible to carry out an exact calculation taking
this effect into account. However, for the parameters of Fig. 3.6 we only expect the
standard deviation of the angle to be () = /(0?) ~ 5.7° since (#) = 0. This
should be a small enough angle that averaging using the pair potentials for 6 = 0 is

a reasonable approximation.

3.3.3 Interaction potential between atoms in different

ground-states

The considerations previously mentioned are useful in general when dressing a system
consisting of atoms only in one ground-state. However, certain protocols such as
Ramsey interferometry discussed in Sec. 3.8 require us to start in a superposition state
of two different hyperfine states. Particularly in the case of Lithium, this presents an
issue in the form of the hyperfine splitting Ag ~ 27 x 76 MHz (Fig. 3.1a) being of
the same order as the dressing detuning A. Therefore, unlike the previous Rydberg
dressing experiments with 8Rb of Ref. [75], we will need to take into account the
interaction potential between atoms in two different hyperfine ground-states.

To obtain the dressed potential between two atoms in different ground-states we
will follow a similar process to the one described in Sec. 2.8. First, we start by writing

down the single-particle Hamiltonians for each atom in the {|i), |r)} basis similar to
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Eq. 2.20 where i € {1,2} labels each ground-state:

. 0 Q/2 ) 0 Q/2
H1 = and H2 = (34)
/2 —-A Q2 —(A+Ay)

Using these and the van der Waals potential V(R) = —Cs/R®, we write down the

two-particle dressing Hamiltonian as
Hy(R) = HL@I+1® Hy+ V(R)(|r) (r] @ |r) (r]). (3.5)

Here we are assuming that even though each hyperfine ground-state will connect to
a Rydberg state with different m;, these Rydberg states are not resolved and thus
interact as if they were the same |r).

We calculate the dressed potential by solving for the eigenenergy of the eigenstate
with maximum overlap with the bare ground-state |1) ® |2). This can be done nu-
merically, or using perturbation theory up to 4th order in € assuming 2 < A. In

this limit, we find that the relevant eigenenergy has the form

QH2A + Ap) 1
Bjiz)(R) = - I6A2(A + Ag)? \ 1 4 CATAWIEE

+ 9ac(2, A) 4+ 0ac(Q, A+ Ay), (3.6)

where 40 are the expected single-particle light-shifts (Eq. 2.31) and the first term
is the desired interaction potential which has some corrections that depend on Ag

compared to Eq. 2.32.

Variation of Rabi couplings

Similarly, we can consider the case of the Rydberg dressed potential between two

atoms which experience the same detuning A but different Rabi couplings €2; and
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Q)y. This is realistic in our experiment since the laser used is tightly focused at the
atoms as shown in Fig. 6.3b leading to a varying Rabi coupling over the atomic cloud.
However, the effect is not drastic. Taking for example an average Rabi coupling €2
and individual €; = o;Q2, where a1 + ay = 2, we will find that the Rydberg dressed
potential will be affected only in its depth by a factor of Uj = a?a3Uy. The change in
Q) does not affect the range of interactions which remains sensitive only to A and the
Cg coefficient. This is one of the reasons we have limited our experiments to small
systems where the variation of €2 is minimal; therefore allowing us to simplify our
thinking of the interaction term and only care about the average €2 within the small

system.

3.4 Laser System

For single-photon excitation to the Rydberg state, we use a deep ultraviolet (UV)
laser system at 230 nm based on frequency-quadrupling light from a diode laser source
which we bought from Laser & Electro-Optic Solutions. A significant amount of time
was spent mantaining the laser at high intensity output. Working with UV light is
quite complicated and requires special considerations in the design of its optical paths.
Unfortunately, nearly every material absorbs light at our wavelength. Typical N-BK7
optics very low transmission and even for uncoated UV-grade fused silica we lose
about ~ 10% per optical element’. While it is possible to get better transmittance
with specialized AR-coatings, this can get expensive and inflexible quite fast. In our
experiment we only used standard uncoated Thorlabs UV-grade fused silica singlet
lenses, specially AR-coated 45° Laser-Optik mirrors with > 98.5% reflection, and Oth
order half- and quarter-waveplates from Altos Photonics. These considerations were
needed in order to maximize the final UV power at the atoms which is very important

for Rydberg dressing as shown in Table. 2.5. In this section, we will describe the

"About 4% per uncoated surface and some small absorption.
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technical aspects of our laser system to do single-photon excitation to |[nP) Rydberg

states of our atoms.

3.4.1 Ultraviolet Laser

As previously mentioned, we bought a laser system from Laser & Electro-Optic So-
lutions. The system consists of 3 main components. First, there is a 920 nm MOPA
laser consisting of a diode and Tapered Amplifier which outputs ~ 1.5 W. This laser
has an extra output of ~ 10 mW which is used for frequency stabilization. Second,
there is a frequency doubling bow-tie cavity using a KNbOj3 non-linear crystal which
when properly tuned outputs ~ 750 mW at 460 nm. Finally, there is a second fre-
quency doubling bow-tie cavity using an a-BBO crystal which requires a constant
flux of oxygen in order to avoid degradation. This second cavity was not as efficient,
and when properly aligned we could expect 2, 40 mW of 230 nm UV light®.

The UV output of this system is a beam with horizontal linear polarization focused
1.5 m away to a waist of ~ 0.6 mm. The beam-shape is not exactly Gaussian, there are
ripples in the horizontal direction which are attributed to the walk-ff in the crystal.
However, when focused down to the order of tens of pm it does have an almost

perfectly Gaussian profile up to some small side-lobes.

3.4.2 Frequency stabilization

The frequency of the 920nm laser is stabilized to a Stable Laser Systems ultralow
expansion glass (ULE) cavity using a Pound-Drever-Hall scheme. In order to lock the
laser at arbitrary frequencies, we use a fiberized Electro-Optic Modulator (EOSpace

PM-0S5-10-PFA-PFA-900/930) to lock the laser to a tunable sideband dependent on

8When the laser was new we could easily achieve up to 75 mW. However, the dressing experiments
happened almost 3 years later by which time the crystal had degraded. A lot of careful alignment
on the specific point the light passed through the crystal was needed just to get > 40 mW
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the frequency driving the EOM [104]. A schematic of the experimental setup is shown
in Fig. 3.7a.

The ULE cavity is surrounded by a homebuilt temperature controlled heat shield
inside of a vacuum chamber to ensure its stability and reliability as a reference. The
temperature is stabilized to ~ 30 °C with a very slow PI servo with time constant of
about 3hr. Fig. 3.7b shows oscilloscope data of the transmission lines of the ULE
cavity. The measured free spectral range (FSR) is 1497.15(1) MHz. We also looked
at the transmission profile of a single line and measured a linewidth of 372(1) kHz
(Fig. 3.7¢). Assuming that the measured linewidth is not limited by the laser itself,
we conclude that the finesse of our ULE cavity is ~ 4000. This is important, because
the final linewidth of the 230 nm light will be four times that of the stabilized 920 nm

laser due to the frequency-quadrupling.

3.4.3 Intensity stabilization

Particularly for Rydberg dressing, it is important to have a very stable intensity. The
fractional power stability of the UV light after the second cavity is about 10% which
was sufficient for experiments realizing an Ising model through resonant coupling to
a Rydberg state (Ch. 4). However, in the case of dressing, power stability is more
critical due to the interaction strength having a quartic dependence on the Rabi fre-
quency (Uy o< Q). Furthermore, the stability of the power during spin-echo Ramsey
interferometry protocols (Sec. 3.8) is important to cancel the phases accumulated due
to the single-particle light shift. We manage to improve the fractional power stability
to much better than 1% by adding a noise-eater.

The noise-eater consists of an electro-optic polarization modulator or Pockels cell
(QuBig PCx2B-UV), an a-BBO Glan-Taylor polarizer (EKSMA 441-2108), and two
custom UV waveplates. We drive the Pockels cell using a £200 V high-voltage am-
plifier (Thorlabs HVA200) and a NewFocus PI servo controller. The Pockels cell
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Figure 3.7: Frequency stabilization of Laser system and characterization of
optical cavity. (a) Experimental setup schematic of the Pound-Drever-Hall setup for
locking of laser to ULE cavity. (b) Transmission peaks of ULE cavity under a sweep.
The measured free spectral range (FSR) is of 1497.15(1) MHz. (c¢) Zoom into one of
the transmission peaks of the ULE cavity. The measured linewidth is 372(1) kHz.
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essentially acts as a voltage-tuned variable waveplate. Together with the waveplates
and the polarizer, we can tune the system to get stable laser light with an efficiency
of ~ 60%. The polarization output of the polarizer was aligned to be vertical. By
measuring the laser power using a pick-off and feeding back on the noise-eater, we
suppressed intensity noise for frequencies up to 1 MHz and eliminated shot-to-shot
drifts in the UV light intensity. The electronics had to be kept as close as possible to
the setup due to concerns about the high-voltages and to obtain fast servo response.
This upgrade to the system was required to be able to get the results described in
Ch. 6. Fig. 3.8b shows this noise-eater as part of the general laser system for Rydberg

dressing.

3.4.4 Optical setup

There have been two general iterations of the optical setup one for each of the ex-
periments described in Ch. 4 and Ch. 6. Common to both of them is the use of
a specially AR coated UV-grade fused silica acousto-optic modulator (IntraAction
ASM-1501LA61). This AOM works using an acoustic “shear” mode and provides an
efficiency of ~ 85% on the first order. It has a center frequency of 150 MHz and a
+25 MHz tuning range. We drive it using a fast voltage-controlled oscillator (MiniCir-
cuits ZX95-200A+). The main laser system and the AOM sit in the main experiment
laser table and using a periscope we bring it up to the vacuum chamber level. We use
a final lens with 500 mm focal length to focus the beam at the atoms in the center
of the table. One important limitation of our current setup is that the machine was
not designed with single-photon Rydberg excitations in mind. Therefore, it was un-
known to us whether the UV would make it through the UV-grade fused silica coated
windows or if it would make a hole in the coating. We observe a total reflection of
~ 30% from the first window and a transmission of ~ 50% from the second window

leading us to estimate an efficiency of ~ 70% of the incoming UV light at the atoms.
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The reflections are quite strong and careful consideration of the input angles had to
be taken into account to avoid spurious reflections at the atoms’. The UV beam is
aligned close to the light-sheet potential optics and is aligned parallel to the y axis of

our optical lattice.

2D Ising setup

To obtain fast amplitude and frequency control of the UV light, we placed the AOM
at the focus of a telescope and imaged it onto the atoms. This way, we were able to
freely tune the frequency driving the AOM with the 1st order while keeping it aligned
to the atoms. With this setup, we are able to modulate both the Rabi coupling and
detuning of the laser by adjusting the amplitude and frequency at which we drive
the AOM. Fig. 3.8a shows a schematic of this setup. Tightly focusing the light to a
waist ~ 40 pm at the AOM also has the effect of reducing the efficiency of the AOM
to ~ 55%.

The 150 MHz frequency of the AOM has to be taken into account as an offset
to the cavity sideband values measured with spectroscopy. A mirror after the last
focusing lens was used to fine align the UV beam at the position of the atoms inside
of the vacuum chamber. The expected beam waist of the UV beam at the atoms due

to the telescope setup is ~31 pm.

3.4.5 Rydberg dressing setup

For dressing, we did not need the fast modulation of the frequency. We cared mostly
about a stable and powerful source. We achieved this by adding the noise-eater to
the setup and modifying the telescope so that the beam was focused to a waist of
~ 16 um at the atoms. We attempted even more aggressive telescopes but the extra

difficulty in alignment outweighed the gain in 2. The AOM here was used mostly

9 At some point we lost a week because we aligned a reflection rather than the main beam.
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as a very fast switch to generate pulses of a precise width necessary for the correct

characterization of the dressed potential. Fig. 3.8b shows a schematic of this setup.

3.5 Spectroscopy of °Li Rydberg states

Once the laser is set up and the optics are roughly aligned, the next important
step is to align the laser to the particular wavelength necessary to couple to specific
|nP) Rydberg states. This was not a necessarily simple question as the NIST Atomic
Spectra Database [105] only lists the transition wavelengths up to [32P). It is possible
however to calculate the expected transition wavelength using the binding energy
(Eq. 2.1) and the ionization energy as explained in App. D.

In Table. D.1 we summarize the transitions that were found as part of this thesis.
We find that the calculated expected values can be trusted up to the resolution that
the ULE cavity resonances provides. In this section, we will explain the spectroscopy

setup and procedures used to identify these transition wavelengths.

3.5.1 “V-scheme” spectroscopy

For initial identification of the Rydberg lines, we performed a “V-scheme” spec-
troscopy [106] with the 230nm beam and a diode laser driving the Dy transition
of lithium at 671 nm on an external spectroscopy cell with a hot °Li vapor!’. The
basic principle of this scheme is to “shelve” some of the 5Li atoms in the Rydberg
state using the 230 nm laser beam and thus affect the absorption spectra of a counter-
propagating 671 nm laser. The effect is very small, therefore, needed to use a balanced
photo-diode and compare the difference of the signals of two beams: one with counter-

propagating UV light and one without it. To find a reference of the transition there

10We needed to use a large current DC power supply to heat up the spectroscopy cell. We found
that usual AC power supplies lead to strong magnetic field effects were the line “shakes” decreasing
the signal-to-noise of the measurement.
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was the possibility of measuring a simple Doppler-Free Spectroscopy (DFS) spectra
by unblocking or unblocking a beam. Fig. 3.9a shows a schematic of the experimental
setup for this mixed “V-scheme” and DF'S setup. The UV light is sent directly from
the experiment table to the laser table using a flip mirror before the optics of Fig. 3.8.

For Doppler-Free Spectroscopy of the °Li D, line, we expect to see two deple-
tions due to the hyperfine ground-states and a crossover peak. The distance be-
tween the depletions should be equal to 228 MHz (Fig. 3.9b). When performing
the “V-scheme” spectroscopy we only expect to see two depletions corresponding

to the hyperfine ground-state transitions. However, the distance between these is

(228 MHz) (1 + gigﬁﬁ) ~ 307 MHz; this is due to the relative difference in Doppler
shift for each wavelength. Fig. 3.9¢ shows the spectra for both DFS and “V-scheme”
spectroscopy for |23P), identifying the important transitions.

This method allowed us to find the transition wavelengths up to [40P)'" and is
good up to the order of MHz for the sideband frequency referenced to the ULE cavity.

More precise schemes are needed to find the line using cold atoms.

3.5.2 MOT spectroscopy

After finding the position of the line, we perform what we call “MOT spectroscopy”.
The first step towards a degenerate quantum gas in our experiment is loading atoms
from a Zeeman slower into a Magneto-Optical Trap (MOT) [92]. For experiments
with UV light, we found that we could use resonant light to deplete our MOT by
blowing away atoms resonantly excited to a [nP) Rydberg state. With this method,
we are able to find the correct transition to a precision of approximately 400 kHz.
This was used to find the |[44P) Rydberg state which we could not find using the
“V-scheme” spectroscopy. Both MOT and V-scheme spectroscopy find the Rydberg

lines at zero field. In general, we observed that when coupling with atoms at a high

"Since the dipole matrix element scales inversely with principal quantum number (Table. 2.1),
higher n values have signals which are below the noise level of the spectroscopy scheme.
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“|Figure 3.10: Precision MOT loss spec-
|troscopy for alignment. We blow atoms
Jout of a MOT right before imaging over
a short pulse after loading. This allows
-|us to precisely align the UV beam very
“lclose to the position of the atoms. The
MOT is much larger (~ lcm) than the
“|optical potentials (~ 100 um) providing a
|much larger target for pre-alignment. In
this figure, the UV beam position corre-
- |sponds to the small depletion close to the
T s SR : .. |center of the MOT. The axes are rotated
, " |by —90° with respect to the experimental
AR S m—z plane.

_.
-

magnetic field in the optical potentials we had to tune the sideband frequencies up
by approximately 12 MHz corresponding to approximately 48 MHz for the 230 nm
quadrupled photons.

Additionally, by changing the length of the pulse and taking advantage of an
imaging system parallel to the UV laser beam we are able to very precisely pre-
align the beam to the position of the atoms in the final trap. A sample image of
an aligned UV beam is shown in Fig. 3.10. Since the MOT is much larger than the
optical potentials it provides a perfect target for precise pre-alignment of tight UV
beam which can have a waist as small as 16 pm. We can also coarsely tune the focus
position of the last lens in Fig. 3.8 by paying attention at the size of the hole made
by the UV beam on the MOT.

Precise alignment procedure

After pre-aligning the beam using the MOT loss spectroscopy (Fig. 3.10) we fine align
the beam in two different ways. The first method is to keep doing resonant blowing
of increasingly smaller pulses and intensities using ND filters. We could repeat this at

the different stages of the experimental sequence [92]. Finally aligning to the atoms
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in a 2D optical lattice potential. This procedure worked well enough for the 2D Ising
experiments (Ch. 4) which had a large waist of approximately 32 pm.

However, since the Rayleigh range depends quadratically on the waist, once we
shrunk our beam for the Rydberg dressing experiments aligning using loss became
much more difficult (w = 16 pm and zzr = 3.5mm). We figured out that by doing
Ramsey interferometry (Sec. 3.8) we could very clearly observe spatial differences on
the single-particle light-shift. Fig. 6.3b(ii) shows for example how the cloud forms
“ripples” corresponding to the tight waist of the UV beam along the perpendicular
direction. We used this clear visual pattern to align the beam exactly to the center
of our cloud with very high precision. This method is so effective that it also allowed
us to precisely tune the direction of incidence of the UV beam with a lattice direction
to within 1° precision. We could also fine tune the focus of the beam to the cloud by
seeing the Rayleigh range effect on the direction parallel to the beam until it was as

flat as shown in Fig. 6.3b.

3.6 Laser characterization with direct excitation

While the measurements of the “V-scheme” and “MOT” spectroscopy let us find the
Rydberg transitions to a precision of a < 1 MHz, for the experiment we need much
more precise calibration of the resonances. This will help us know the detuning A
of the laser from the transition. Unlike in the spectroscopy cell, in our experiment,
the 5Li atoms are cold, trapped in an optical potential, and at a magnetic field of
595 G perpendicular to our 2D lattice. These will lead to Zeeman (Eq. 3.1 and single-
particle light-shifts (d4¢) of the transition which would move the resonance by a few
MHz. Furthermore, the experimental protocols require the precise knowledge to of

the Rabi coupling €2 of the laser from the ground-state atoms to the Rydberg state.
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30 ' ' ' ' ' T Figure 3.11: Rydberg spectroscopy by
blowing cold atoms at resonance. We
1 perform spectroscopy of the [25) — |[nP)
Rydberg state transitions of %Li by res-
onantly blowing cold atoms in the op-
tical lattice. Choosing the length and
{ strength of the UV pulse we can mini-
mize Fourier and Power broadening effects.
Also by blowing on a “sparse” system
we achieve roughly “single-atom” measure-
| ments. This particular scan was of the
|1) — [31P) transition in a shallow lat-
' ) ' ) tice of ~6.2 Fr depth corresponding to the

_ 6168 617 6172 first point of Fig. 3.12.
Sideband Frequency (MHz)

Atom Number

First, we found the resonance by blowing away atoms with UV pulses that were
much longer than the lifetime of the Rydberg state which is on the order of tens of ps.
Here we look at the loss of atoms when the laser is tuned resonantly to the transition
between the ground-state and the Rydberg state. By decreasing the UV power with
ND filters and using long blowing pulses (ms) we were able to decrease the power
and Fourier broadening of the peak. By varying the density of the cloud on which
we perform this blowing spectroscopy, we can observe broadening due to interactions
between neighboring Rydberg atoms or direct excitation of pair-states. To avoid such
broadening, we mostly characterized our laser in the very sparse regime where atoms
were on average many lattice sites apart from each other. This allows us to treat
the measurements as averaging multiple “single-atoms” at a time. Fig. 3.11 shows
a sample scan for the |31P) transition at ~592 G and low lattice depth and sparse
loading. We are able to experimentally measure a combined laser/Rydberg linewidth
of ~100kHz.

Using this very simple technique we performed a lot of characterization about
the behavior of the resonance of °Li |[nP) Rydberg states with various parameters of

our experiment. By tuning the cavity sideband frequency using a GPIB controlled
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function generator (HP 8648A) we were able to take many different scans of resonant
blowing ground state atoms while maintaining the laser locked. It is important to
repeat that due to the quadrupling nature of our laser, all differential frequencies

on the sidebands correspond to a quarter of the real energy differences on the UV

photons (hAv = AE/4).

3.6.1 Resonance vs. lattice depth

A very strong concern we had before starting this experiment was what effect would
an optical lattice generated using 1064 nm light would have on the Rydberg lines. To
first order, we knew that the polarizabilities of the ground-state and |nP) Rydberg
states had opposite sign. This means that the Rydberg atoms would be anti-trapped
by the optical lattice in the position where the ground states are trapped. Further-
more, in Fig. 2.1 we show that the Rydberg atom electronic wavefunction has a radius
() ~ 50nm from the core. For these distances, the optical lattice already has ~5%
variation in its power and can couple directly to the valence electron leading to higher
order corrections to the model potential of Eq. 2.4. Additionally, the ground-state
atoms have a wavefunction spread of ~100nm (Sec. 3.3.2). All of these consider-
ations would make for an increasingly difficult calculation with possibly non-trivial
behaviors. Instead, we opted to experimentally study the effects of the lattice depth
(power) on the resonance. Fig. 3.12 shows a summary of this study done for the
|1) — |31P) transition in sparse systems.

What we find is that the dependence of the Rydberg state transition is roughly lin-
ear with lattice depth. The slope of this linear dependence (Fig. 3.12a) is Av/AVj,u =
10.0(7) kHz/ ER. If we take into account the quadrupling of the light and the known
Er = h14.66kHz we get a dependence AEj31p)/AVigy = 2.7(2). Furthermore, we
observe a clear effect on the measured HWHM of the lorentzian fits (Fig. 3.12b). The

effect seems to be that lattice depth broadens the transition meaning that low lattice
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depths are possibly best. This is good for Rydberg dressing experiments with itiner-
ant systems which require low lattice depths with strong tunneling. We repeated less
careful studies for other |nP) states finding the same slope within errorbars and the

same qualitative behavior of the HWHM.

3.6.2 Resonance vs. magnetic field

A second important consideration is the effect of strong magnetic fields on the transi-
tion. From Sec. 3.1.1 we know that most states disperse linearly according to Eq. 3.1.
Furthermore, in our particular scheme using linear polarization, we know that the
|1 — 3) ground states move with the same slope as the |2*) Rydberg state (Fig. 3.1).
However, just like with lattice depth there are higher order corrections to this simple
picture. |1) is not a pure state and from the Breit-Rabi formula we expect ~5MHz
non-linearity between 300 — 600G. Furthermore, the magnetic field can have a non-

1

trivial effect on the polarizabilities as a® oc (E, snp — Enp)~'. From various mea-
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surements, we observe that the magnetic field has a roughly linear effect on the
|2S) — |nP) transition with slope Av/AB ~ 0.03 MHz/G with no strong difference
on the particular hyperfine ground-state used.

Given how important it was to know A in our experiments, we would perform
a resonance scan every morning or whenever we changed any parameters in order
to be able to keep A constant throughout. We found that all lines were stable
during any given day and in general we observed no day-to-day drifts unless the
experiment temperature changed drastically. Even then, the line would not move by
more than 1 MHz. Even with all the complicated effects that these parameters can
have on the Rydberg landscape, we always observed roughly the expected behavior
from calculations that only take into account a magnetic field for purposes of Rydberg

dressing.

3.6.3 Magnetic dispersion of |[nP) Rydberg states

As a sanity check, we decided to directly measure the magnetic dispersion of Eq. 3.1.
To do this, we used a waveplate to change the polarization of the UV light such
that it had a strong o~ component at the atoms. This allowed us to measure the
cavity sideband frequencies v for both the |1) — |2*) and |1) — [1*) transitions
of the |31P) Rydberg state at three different magnetic fields. Fig. 3.13 shows the
extracted energy differences between the measured resonances with a linear fit. We
extract a slope AF/hAB = 1.30(3) MHz/G which is very close to the expected Bohr
magneton ug/h = 1.4MHz/G. Tt is unclear why the slope is not exactly what we
expect. However as explained in the previous subsections, it is possible that the
magnetic field affects the single-particle light-shift felt by the Rydberg states in the
optical potential. Anyways, the measured slope is close enough to conclude that we
roughly have a good understanding of the Rydberg landscape in our experiment. This

particular measurement was not repeated at different principal quantum numbers but
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we did not have any indication that it should have a strong effect given that we observe

the same effect of the field on the |25) — |2*) transitions for different n.

3.6.4 Observation of anomalous “sharp” peaks near reso-

nance

For particular transitions and fields, we observed anomalous resonances that we were
not able to match to any particular transition. These resonances where often very
strong and “sharp” leading to full loss of the system and often accompanied of side-
bands which we attribute to recoil from the lattice. Two-photon transitions do not
make sense unless we are fully ionizing the 5Li atoms. Other options for explanations
of these are that they are “forbidden” transitions. In any case, we avoided using
schemes where a resonance was observed in order to avoid non-trivial behaviors. For
example, Fig. 3.14 shows one of these resonances for the |3) — |23P) transition at
~595 G. In this particular instance, we decided to change to using the |1) hyperfine
ground-state which did not show any anomalous behavior and used that scheme to re-
alize a 2D transverse Ising system (Ch. 6). In that first experiment, we did not explore
the effect of low lattice depths (Sec. 3.6.1), as such all observed lines were broadened
(Fig. 3.12). Therefore, initially we extracted the I' < 100kHz laser linewidth from
these anomalous resonances (Fig. 3.14). We allowed ourselves to do this since any

optical transition has to be limited by the laser linewidth.
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3.6.5 Direct measurement of Rabi frequency

Once the Rydberg resonance position was identified by blowing away the atoms,
we now performed very short UV pulses with variable length to directly measure
the Rabi frequency €2 of the transition. Unlike the blowing experiment were atoms
are simply “pushed” out of the trap in a very long pulse, here we are coherently
exciting the atoms to the Rydberg state. At the end of the pulse, the atoms have
certain probabilities of being in the excited (Rydberg) state or the ground-state. We
image only the ground-state distribution after removing the Rydberg atoms by rapidly
increasing the lattice depth to a value suited for fluorescence imaging, leading to rapid
photo-ionization or expulsion of the anti-trapped Rydberg atoms. We measure the
efficiency to remove Rydberg atoms to be 90(3) %. Fig. 3.15a shows experimental
results of a Rabi oscillation for |23P); we attribute the decay of oscillations to the
intensity stability (/10 %) of the laser rather than to short 7} decoherence time which
should be comparable to the Rydberg state lifetime of ~20us. The maximum Rabi
frequency of the |23P) transition we could get with the original laser setup (Fig. 3.8a)
was Qe = h X 5.4(1) MHz.
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As we know that the UV beam is not homogeneous at the atoms but rather it has
a Gaussian profile, it is important to measure how much of a variation it has over the
region of interest of our experiments. Taking advantage of the single-site resolution of
our Fermion microscope, we can measure the small variations of the Rabi frequency
at different points of the cloud over one of the lattice axes. In this way, we were able
to experimentally measure the beam waist at the atoms and the spatial variation of
Q2 over the region of interest to be 35 pm (Fig. 3.15b).

This method of calculating €2 was useful for the initial Ising experiments (Ch. 4).
However, for Rydberg dressing we wanted to be much more precise and developed
an indirect way of measuring () using Ramsey interferometry which is explained in

detail in Sec. 3.8.

Probing coherence

Since we can directly observe the Rabi oscillations of the resonant |g) — |r) system,
we can probe the coherence of the system by doing a spin-echo Ramsey sequence of
UV pulses. The pulse sequence is /2 — 7 — 7 — 7 — 7/2 pulse where 7 is a delay
time in between UV light pulses which put the initially ground-state atoms into a
superposition with the Rydberg state. The ground-state fraction is measured at the
end of the sequence (Fig. 3.15¢). In the case of a perfectly coherent system, the pulse
sequence always reduces to a 27 pulse and all atoms should return to their ground-
state. However, even for 7 = 0, the measured ground-state fraction is reduced to
~ 0.8 which we attribute to shot-to-shot laser intensity fluctuations. This reduced
fraction is maintained for delay times of up to 27 = 1 ps with no obvious decay trend
indicating that there is no loss of the quantum state coherence over the pulse lengths

studied in the experiments of Ch. 4.
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Figure 3.15: Rabi frequency and coherence measurements for the resonant
|25) — |23P) transition. (a) “Single atom” Rabi Oscillation of a sparse cloud. (b)
Rabi Frequency Gaussian profile over the atoms. (c¢) Measurement of the ground-
state fraction after a spin-echo pulse sequence, indicating no loss of coherence over
<lups.

3.7 Lifetime characterization of Rydberg dressed
atoms

In Sec. 2.8 we explained how by off-resonantly coupling ground-state atoms with a
Rydberg state we can put them in a superposition state where they have a very small
admixture f = % of the Rydberg state. This technique applied to °Li leads to
the possibility of engineering long-range itinerant systems such as the one studied in
Ch. 6. In our experiment, we are able to study condensed matter systems where the
motional timescales are Ty, < 1ms (t > 27 x 1kHz) thanks to the light mass of
SLi. For the accessible Rydberg states using our UV laser, the bare Rydberg lifetimes
are of the order of tens of ps (Fig. 2.2a). Given the power of our laser and choosing
an appropriate detuning A from resonance we would theoretically expect Rydberg
dressed lifetimes 74 = 8727 much larger than the tunneling time Tyymn.

However, in practice this is not the case. Previous realizations of Rydberg dress-

ing using Rb and C's atoms described in Refs. [71-75] have reported much shorter
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lifetimes than expected from the simple picture of Sec. 2.8. The main understanding
of what is limiting these experiments is the so-called “black-body avalanche” effect.
This is a global loss mechanism where a single dressed atom decays into a nearby Ry-
dberg state via the exchange of a photon with the black-body radiation surrounding
the system. The formed impurity is fully collapsed into a Rydberg state leading to
resonant pair-state excitations at a facilitation radius |C3/A["® under the UV laser
light-field broadening the line and destroying the system. Recently, experiments using
Rb in optical tweezers have been able to directly study this loss mechanism finding
good agreement with this resonant facilitation radius picture [107].

In our experiment using %Li we have not observed exactly the same effect. The
observed lifetimes are lower than expected from the simple dressing picture. But
the scaling of the avalanche loss mechanism has a characteristic scaling with atom
number (7.;; o< N~! [62]) which we do not observe (Figs. 3.16 and 6.5). One possible
explanation for this difference is that given the light mass of °Li, the energy gained
by the impurity due to a photon recoil or the strong dipole-dipole forces is enough
to “kick” it out of the system before the “avalanche” fully onsets. We do not have
a clean theoretical framework for the non-trivial decay mechanisms that limit our
system. However, in this section we will detail all of the characterization we did to
understand the achieved Rydberg dressed lifetimes and to choose suitable parameters

were we can realize a strongly-interacting itinerant system (Ch. 6).

3.7.1 Effect of geometry

Early in our characterization, we decided to work with the |31P) Rydberg state.
From the expected scalings of Table. 2.4 we expected optimal control of long lived
Rydberg dressed atoms with strong nearest-neighbor interactions. Very quickly we
realized that similar to previous experiments with Rb and C's the achieved lifetimes

were much shorter than expected and dependent on atom number. Following the
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Figure 3.16: Effect of geometry on Rydberg dressed lifetimes. Initial atom
number decay of systems coupled to the |[40P) Rydberg state. We observe that the
geometry of the system has a very strong effect on the achieved lifetimes. Particularly,
we observe that increasing the atom number of thin rectangles aligned with the UV
dressing beam does not have any effect on the lifetime. Parameters: Q2 = 27 x
5.6(1) MHz, A = 27 x 40 MHz, and B = 592(1) G.

expected scalings, we decided to study couplings to [40P) hoping we would achieve
better coherence times. Here we realized something interesting. We could prepare
thin rectangular 2D systems along the UV dressing beam and observe no change in
the lifetime with varying atom number. The effect was different for other geometries
and the measurements are summarized in Fig. 3.16.

A possible explanation is that in °Li we are avoiding the facilitation radii even in
2D systems similar to what was achieved on small 1D systems of Rb [90]. The UV
dressing laser has a very tight waist and it is conceivable that the differential light-
shifts in the perpendicular direction lead to resonances. In the case of the different
configuration of Fig. 3.16, light-shift assisted perpendicular resonances appear for
the “perpendicular rectangle” geometry and more damaging diagonal resonances can

further plague the “disk” geometries. This measurement was repeated for [31P)

(Fig. 6.5a) and less thoroughly for |28 P) finding that the width of the system could
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increase for lower principal quantum numbers without change in the atom number
independence effect.

For all following characterization we limit our studies to systems whose width in
the direction perpendicular to the UV dressing beam is short enough to keep us in

this limit where atom number has no measurable effect on the decay.

3.7.2 Density-dependent lifetimes

When we started studying the lifetime of Rydberg dressed many body systems, we
noticed that the observed atom number decay could not be understood by a single
exponential model N(t) = Nye 7. What we observed was a time-dependent lifetime
7(t) where the decay rate would “slow-down” as we lost more and more atoms in
the system. We came to the understanding that the system had a density-dependent
lifetime and studied the decay by fitting single exponential models to “bins” of atoms
in a rolling manner. This method allowed us to extract the measured lifetimes as a
factor of the density for varying dressing parameters A, €, and B. Fig. 3.17 shows
a sample of this analysis method for a thin rectangular system coupled to the |31P)
Rydberg state. Same as the data of Fig. 6.4, we observe that as the system loses more
atoms and becomes sparser we recover the expected 7,4 of the simple dressing model.

It is important to note that in order to arrive at the conclusion of a density-
dependent lifetime we performed many experiments where the size of the system
and initial atom number was varied for the same dressing parameters. We observe
matching results for all this variations leading to the conclusion that density (not atom
number) is the most important factor for our observed decay. This is in sharp contrast

with the black-body avalanche picture previously discussed in literature [62, 107].
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. . . . . Figure 3.17: Density-dependent life-
1 times of Rydberg dressed systems.
Observed atom decay of 5Li ground-state
atoms dressed with the |31P) Rydberg
state. We initialize the system in a long
and thin rectangular configuration along
the UV laser beam direction. The observed
decay cannot be explained by a single ex-
ponential so we resort to fitting exponen-
tials to bins of 6 data points. (inset) Ex-
tracted lifetimes 7 as a function of density
n. Grey dotted-line is expected lifetime

' — ' T4r. Parameters: = 27 x 6.9(1) MHz,
Time (ms) A =21 X 60 MHZ, and B = 592(1) G

Atom Number

Lifetime vs. A

The simple Rydberg dressed lifetime has a characteristic scaling with detuning A of
Tar = 727 o< A%, We are able to observe this expected scaling for single-exponential
model fits to systems initialized in the very sparse limit. However, for dense systems
we observe a clearly different scaling. In Fig. 3.18 we show the measured lifetime
scalings for sparse and dense systems along with fits to power laws. The expected
scaling is observed for the sparse system which should correspond to the single-particle
limit. Moreover, we are able to extract a bare Rydberg lifetime of 7 = 33(5) ps which
roughly agrees with the expected Tg,q = 38.71s from Eq. 2.13. For the case of the
rapid initial decay of dense systems we observe a steeper scaling fitting a power law
of a = 3.5(2). If we limit the fit to the larger detunings where the simple Rydberg-
dressing picture (3% < 1) can be assumed, we are able to fit a 74, oc A3 model within

errorbars.

3.7.3 Effect of magnetic field

Being one of the biggest “knobs” in our experiment and a key difference from previous

experimental realizations, we performed a lot of experiments studying the effect of
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Figure 3.18: Dressed lifetime vs. A.
Measured lifetimes of a long strip system
Sparse o of ground-state atoms coupled to the |31 P)
Dense —o— |1 Rydberg state. (green) If the system is

¢ ¢ initialized with a sparse density (single-
6 particle limit) we observe the expected
f Tar o< A? scaling. From the fit we extract
TE 1 7 =233(5)ps as the bare Rydberg lifetime.
(orange) If the system is initialized close
to full density and we extract just the ini-
01k { tial decay rate we observe a steeper scal-
$ ing than expected. By fitting to a power
law (74 o A®) we extract a = 3.5(2).

10 100 Parameters: Q = 27 x 7.7(1) MHz and
Detuning A (MHZz) B — 592(1) Q.
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the magnetic field on the atom number decay. In general, we did not observe any
clear effect as long as we took the care to keep A the same given the observed shifts
in the resonance detailed in Sec. 3.6.2. There was however a study where we saw a
clear difference between the atom number decay at very high fields for atoms coupled
to |28P). Fig. 3.19 shows the atom number decay for 4 very different large magnetic
fields. What we observe is not a gradual effect, but rather a sharp change of the
profile at some critical field between 660 G and 720G. At |28P) for typical fields
~592 G we observe longer lifetimes at high densities (Fig. 6.4). But at higher fields,
we observe that the decay profile drastically changes and more closely resembles the
data measured for [31P) (Fig. 3.17) and other higher principal quantum numbers.
As discussed in Sec. 3.2.2 and shown in Fig. 3.4, the magnetic field has a strong
effect on the “jungle” of extra pair-state lines close to our target state. It is possible,
that above a certain field one of these lines with non-zero overlap with the target
state appears. This could imply that direct resonant excitation to nearby pair states,

and not black-body induced decay, is what is limiting the lifetimes in our experiment.
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3.7.4 Effect of optical potentials

Our 2D optical trap is comprised of two different lattice potentials: a red-detuned
lattice in the & —y plane made using 1064 nm light and a blue-detuned vertical lattice
in the z direction made using 532 nm light to provide tight confinement and achieve
the 2D regime [92, 93]. We studied the effect of both of these potentials on the
lifetime of the Rydberg dressed atoms and found no effects when keeping A constant
by accounting for the light-shift due to the potentials (Sec. 3.6.1).

This result is particularly interesting for the case of the the optical lattice because
it means that the presence of tunneling does not facilitate extra loss mechanisms.
This was a topic of theoretical debate in Refs. [108, 109] before our recent results
summarized in Ch. 6 and particularly in Fig. 6.4c showed that tunneling does not

affect the lifetime in our system.

3.7.5 Effect of hyperfine ground-state

In Sec. 3.1.1 we described the properties of the hyperfine ground-states at high fields.
The usual groud-states we use in our experiment are |1) and |3) of which only the

former is pure at all magnetic fields [96]. In our experiment we can initialize the
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system in either of them by first resonantly blowing away the other state. When
comparing schemes that use each of these two initial states, and taking into account
the different position of the resonance, we did not find any difference in their measured
lifetimes. This points towards our conjecture that Rydberg states that differ only in
they m; quantum number can be treated the same. However, as already explained in
Sec. 3.1.1, out of an abundance of caution we decided to start using state |3), which

is pure at all fields, for the itinerant experiments shown in Ch. 6.

3.7.6 Effect of principal quantum number

Theoretically, the Rydberg-dressed lifetimes have a characteristic scaling with prin-
cipal quantum number as shown in Table. 2.4. This scaling depends on whether we
are limited by spontaneous emission or black-body induced decay. It also depends
on which dressing parameters we decide to keep constant. Even so, this scaling is
always positive meaning that we would expect the dressing lifetimes to improve with
increasing principal quantum number of the coupled |nP) Rydberg state.

Experimentally, we found the opposite behavior. Initially we started using the
|31P) Rydberg state finding too low lifetimes compared to the expected dressed life-
times 74.. We then used larger |nP) states finding an even worse fraction of the
expected lifetimes. It was not until we tried |28 P) that we achieve a reasonable frac-
tion of ~ 1/37,, for half-filled 2D systems of < 50 atoms. This allowed us to study a
parameter space with sufficient coherence to observe a clear effect of interactions on
the relaxation dynamics of charge-density-waves [14].

While this experimental characterization was under way, we still lacked the full
understanding of our high field dressing scheme (Sec. 3.1) and the possible effects
that nearby pair-potentials could have (Sec. 3.2). In Figs. 3.3 and 3.4 we can observe
how many more nearby pair potentials approach distances ~1 a; as a function of

increasing principal quantum number and magnetic field respectively. This fact and
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the observation of an “onset” of a more rapid decay with high magnetic fields in |28 P)
makes us believe that the decay mechanism limiting our system is resonant excitation

to nearby pair-states which have non-zero overlap with the target state.

3.8 Rydberg-dressed potential characterization

In order to characterize the full Rydberg-dressed potentials described in Sec. 3.3
we use many-body Ramsey interferometry between the two lowest hyperfine ground-
states of 5Li. The use of this technique to characterize Rydberg-dressed potentials was

originally proposed in Ref. [110] and subsequently implemented for Rb in Ref. [75].

3.8.1 Many-body Ramsey interferometry

Experimentally, we can realize this technique by initializing the system in a spin-
polarized gas of |1) atoms on a deep lattice with suppressed tunneling. Next, we
perform Ramsey (7/2 — 7 — 7/2) and spin-echo (7/2 — 7 — 7™ — 7 — 7/2) sequences
of RF and UV pulses in order to indirectly measure the Rabi frequency and directly
probe the Rydberg dressing long-range interactions respectively. We can achieve this
by looking at density profiles and correlations after blowing away one of the two spin
states.

In the frozen gas regime, we can write down the many-body Hamiltonian over
which the Rydberg-dressed atoms evolve during an UV pulse as a classical Ising

model where the lowest hyperfine states correspond to different spins:

. 1 w1 )
Hdr = H() + 525ZO‘£) + ggmjgg)ggj) (37)
) i#£]
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Here, Hj is an energy offset, the second term is a longitudinal field of strength J;
dominated by the single-particle light-shift, and the third term is an effective interac-
tion term with strength V;;. Specific choices of pre-factors will become obvious later
on.

A procedure to exactly calculate the experimental observables of different pulse se-
quences is described in the supplement of Ref. [75] and in Ref. [62]. This calculation re-
lies on correctly writing down the unitary operators corresponding to the evolution of
the spin system under the dressing Hamiltonian of Eq. 3.7 (Uy, = e =)o dedt). Using
this unitary time evolution and the operators corresponding to the RF pulses we can
exactly calculate the final expectation values of arbitrary operators of different pulse
sequences in terms of the accumulated phases ¢; = [ 6;(t)dt and ®;; = [ Vi;(t)dt

over the length 7 of the dressing pulse.

Ramsey pulse sequence

For a /2 — 7 — m/2 pulse sequence, the observable is the expected single-component

density 0%, = [1) (1| which can be calculated to be:

, ®;,;
(6%) = % - %cos(gbi) Hcos ( 5 ) (3.8)

i
This observable depends on both the phases accumulated due to single-particle
light-shifts and interactions. However, by choosing large enough detunings A we can

make it such that the effect of interactions is negligible compared to the light-shift
(Fig. 3.20).
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Spin-echo pulse sequence

For a spin echo 7/2 — 7 — m — 7 — m/2 pulse sequence, the observable is the single-

component density correlation which can be calculated to be:

i A 1
(61010 =3 (H cos @) + [ [ cos z3>

k#i,j5 k#i,j5
1
~1 COS <I>2 H cos @, cos @y, (3.9)

k#i,g

where @,213 = ®;;, £ @, and ®;; = 0. This observable depends purely on the phases
accumulated due to interactions and it is our main way to directly probe the long-

range interactions of the system (Fig. 6.3c-d).

3.8.2 Interferometry of °Li

Having explained the observables of the two pulse sequences, all that is left is to write
down the many-body dressing Hamiltonian of Li atoms in the form of Eq. 3.7. As ex-
plained in Sec. 3.3.3, we need to take into account the dressing of both states because
the hyperfine splitting between the two lowest ground-states is only 75.806(3) MHz
and the detunings we use are between 30 MHz and 100 MHz. For our interferometer,
we use hyperfine ground states |1) = [1) and |2) = |]). The many-body dressing

Hamiltonian is

: 15 A
o= (816f] + 6f5(})
1
A INONE)
+§§:<V TT TT+V u oy
vy

s s )
V TT u V u TT) (3'10)
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where 6% is the single-particle light shift for spin « at site i, V»QB is the Rydberg
dressed potential between spins a and S at sites ¢ and j, and VN V“. Using the
relations a%) = (]I +0 ) and Ui i = (]I — ), we can rewrite the Hamiltonian

as an Ising model of the form:

Hy, = H,
1 1 ,
- T < - 0 AN ~ (1)
+2§j<5i ot 5> (v VU)>UZ
i i
1 M, U 1\ AG
+§§‘ .j(vij + V=2Vl 6050 (3.11)

Hg = Hy + = Zé ' ZVJJA; (3.12)

1753

Where 0] = (52—(5%—1—% > i (VZT V#) and V7 = Vir—i—‘/;ﬁi—ZVi? are the corrected
longitudinal field and interaction terms. We can use these corrected terms to calculate
the accumulated phases and use them on Eqgs. 3.8 and 3.9. We can exactly recover
the equations of Ref. [75] if we set every term except 52 and VJT to 0. This is because
for Rb the hyperfine splitting is much larger (~5GHz) and one can safely assume

that only state |1) is being dressed.

3.8.3 Ramsey vs. Detuning

One of the initial measurements we did with the interferometry was to study the
scaling of the Ramsey fringe frequency ¢ with detuning A. In figuring out how to
properly model the data we first realized that the dressing of state |2) could not
be ignored. Furthermore, there is an extra collective field term in the longitudinal
field of Eq. 3.12. This interaction effect effectively reduces the measured Ramsey
frequencies ¢ as shown in Fig. 3.20. In the beginning we had the idea of fitting a Cg

coefficient based on this scaling. However, we found that the spin-echo pulse sequence
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was a much better probe of the interactions since it removes all effects due to the

single-particle light-shifts.

3.8.4 Indirectly measuring the Rabi frequency ()

At large detunings, the collective field term due to the Rydberg-dressed interactions
is negligible. On an almost daily basis, we performed a Ramsey pulse sequence for
A =~ 27 x 100 MHz to indirectly measure the Rabi frequency €) and align the laser
beam if needed. At this large detuning, the ramsey fringe frequency ¢ depends only
on the single-particle light-shifts of states |1) and |2) as ¢ = d4c(Q, A) — d4c(Q, A+
Ag). Here, Ag is the hyperfine splitting and d4¢ is the single-particle light-shift
from Eq. 2.31. Doing a Taylor expansion for Q?/A? < 1 we can solve for the Rabi

frequency and find the following relation:

Q- ﬁ (3.13)

Using this equation we are able to not only extract the Rabi coupling €2, but also

we can measure the waist of the Gaussian UV dressing beam by looking at its profile
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over a large could (Fig. 6.3b). This technique is so precise that we used it to fine

align the dressing beam at the atoms to very good precision.

3.8.5 Directly measuring interactions from Spin-Echo inter-

ferometry

In principle, one could also measure density oscillations after a spin-echo pulse se-
quence and directly extract an oscillation frequency equal to the interference of in-
teractions for the lattice distances. However, this would require perfect filling, as
difference in holes from shot-to-shot will inevitably lead to decoherence. Further-
more, as discussed in Sec. 3.7, the lifetime depends heavily on the density and is
minimal at unit filling.

Instead, we have opted to look at the density-density correlations from Eq. 3.9
after very short pulses, similar to what was done in Ref. [75]. This observable is
much less susceptible to imperfect filling, and can be shown to scale quadratically
with the interaction for V(r)7 < 1. In Fig. 6.3c-d we show a comparison between
the measured correlations and theory. We find very good agreement when taking into
account the full Rydberg-dressed potential (Sec. 3.3) and an offset attributed to atom
loss.

In our experiment, we have opted to trust the Cg coeflicients extracted from
numerical calculations using the Pair-Interaction package [87]. We did not find any
clear deviations from what we physically observed when taking into account all of the
modeling described throughout this chapter. If in the future we are able to increase
the coherence, further characterization techniques will need to be developed in order

to measure this interaction potential rather than using a priori calculations.
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Chapter 4

Quench dynamics in a 2D

transverse Ising spin system

This chapter presents the work published as

E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul, D. A. Huse,
P. Schauf3; and W. S. Bakr. Probing the quench dynamics of antiferro-
magnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X

8 (2018) [12]

As we were performing the characterization of the UV laser system described in
the previous chapter we realized that it would be possible for our system to simu-
late a two-dimensional transverse Ising spin Hamiltonian with broken Zs symmetry,
through direct excitation to a Rydberg state whose blockade radius Ry, (Sec. 2.7.1) is
on the order of the lattice spacing. Previous work in both optical lattices [111, 112]
and tweezer arrays [88, 113, 114] had focused on larger blockade radii and its effects.
However, this regime makes it hard to study many-body states with a large Rydberg
fraction. In contrast, the regime studied in our work is particularly interesting be-

cause it features a direct quantum phase transition between a paramagnet and an
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antiferromagnet with broken Z, symmetry. Our work is closely related to studies in
one-dimensional [43, 114] and two-dimensional [50, 115] tweezer arrays.

Using our platform, we explored the dynamics of a two-dimensional quantum Ising
model by coupling a nearly defect-free array of neutral atoms in an optical lattice to
a low-lying Rydberg state [49]. The spin coupling in the model arises due to a van
der Waals interaction between atoms in the Rydberg state. If one atom is in a Ryd-
berg state, the excitation of another atom to a Rydberg state is strongly suppressed
within a blockade radius R, [82-86]. This is because the interaction between the
Rydberg atoms within this radius is much larger than the laser coupling strength.
While there exists a variety of well-developed theoretical techniques to study the
equilibrium properties of quantum spin systems [116-122], the toolkit for simulating
real-time dynamics of these systems is rather limited and can only capture the evo-
lution accurately for short times, especially for systems in more than one dimension
[116, 123-125]. In this work, we benchmark state-of-the-art numerical techniques to

the results of our quantum simulator and find reasonably good agreement.

4.1 Simulating a quantum Ising model with Ryd-
berg atoms

We realize a quantum Ising spin system with an array of °Li atoms in an optical lattice
with near unit-occupancy. The lattice is deep enough to suppress tunneling over the
timescale of the experiments. We prepare all the atoms in the same hyperfine ground
state ||). Interactions are introduced by globally coupling the atoms with a single
laser field to a Rydberg state |1). The van der Waals interaction between atoms in the

Rydberg state is isotropic and takes the form V;; = Cg/|r; — r;|°. The Hamiltonian
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of the system is given by:

ﬁ:QZS%Z(L—A)SﬁZ%S;S; (4.1)
i i i#j

Here S'la are the spin 1/2 operators for the ith lattice site and o = x,y, z. The first
two terms of this Hamiltonian describe transverse and longitudinal magnetic fields
that couple to the pseudospin. The Rabi frequency 2 that drives a transition between
the ground and the Rydberg state for an isolated atom determines the transverse
field, while the detuning A of the laser frequency from atomic resonance determines
the longitudinal field (Sec. 2.7). Z; = 3_. . % can be taken as a site independent
detuning in a large system as ours. We work with an attractively interacting (V;; < 0)
Rydberg state (|23P)). In the absence of the fields, the Hamiltonian’s most excited
state is a classical antiferromagnet, which is the ground state of the Hamiltonian
ﬁ = —H. For R, = (Ce /Y% > a4y, the ground state phase diagram of ]f.l in Q/A
parameter space contains multiple Rydberg crystalline phases with different Rydberg
atom fractions [43, 126-129]. However for R, ~ a4, the regime we study in this
experiment, }:I can be approximated by a nearest-neighbor Ising Hamiltonian with
coupling J = Cg/al .. A phase diagram for this model is shown in Fig. 4.1a and
has only one ordered phase, the antiferromagnet [130, 131]. The initial state in the
experiment is the paramagnetic ground state of ﬁ for positive detuning A > J > Q.
In this work, we quench the system from this initial state to the antiferromagnet
with varying degrees of adiabaticity and study the ensuing dynamics of the spin

correlations.
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Figure 4.1: Realization of a 2D quantum Ising model with Rydberg atoms
in an optical lattice. (a) Ground-state phase diagram of the 2D quantum Ising
model H with nearest neighbor coupling J. This is an approximate phase diagram
of our Rydberg system when the blockade radius is comparable to the lattice spac-
ing. Transverse and longitudinal fields are controlled by the Rabi frequency €2 and
laser detuning A, respectively. There is only one ordered phase, the antiferromagnet
(AFM). Outside of this region there is a paramagnetic (PM) phase where the spins
align with the field. (b) Experimental setup consisting of a 2D array of atoms at
the focus of a high-resolution objective, capable of resolving individual sites of the
lattice. Atoms in the ground state (small blue spheres) are directly coupled to the
23P Rydberg state (large red spheres) with 230 nm laser light. (¢) Typical atom
configurations at different stages of the experiment. The initial state consists of an
array of atoms in the electronic ground state (blue, left). This state is quenched
into a state with antiferromagnetic correlations (Rydberg atoms in red, center). By
increasing the lattice depth, Rydberg atoms are lost and only the ground state atoms
are imaged (right). (d) Raw fluorescence images of an initial (left) and a post-quench
(right) configuration with strong antiferromagnetic correlations, together with recon-
structed images (each blue pixels depicts a detected atom in the ground state).
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4.2 Experimental realization

We prepare nearly defect-free 2D arrays of atoms by taking advantage of Pauli block-
ing in a highly spin-imbalanced degenerate Fermi gas loaded into a square optical
lattice at a magnetic field of 595G (for details see [92, 93]). At this strong fields,
the spin mixture consists of the first |1) = |25,0,—1/2,1) (in |nl, m;, ms, m;) basis)
and third [3) = [25,0,—1/2, —1) lowest hyperfine ground states of °Li, with |1) as
the majority. The minority atoms, needed to thermalize the gas while loading into
the lattice, are subsequently removed with a pulse of resonant light. We focus our
analysis on an annular region with outer (inner) radius of 9 (4) sites where the average
occupancy of the remaining state |1) atoms, measured from repeated preparations of

the system, is maximal and corresponds to 95.7(4) %.

4.2.1 Laser System for coupling to Rydberg states

We couple the state |1) atoms to the |23P,0,—1/2,1) Rydberg state using single-
photon excitation with a linearly-polarized ultraviolet (UV) laser at 230 nm (Fig. 4.2).
The experiments are performed at a bias magnetic field of 595 G pointing orthogonal
to the 2D layer, allowing us to address a single Rydberg state. Up to 60 mW of UV
light is available from a frequency-quadrupled diode-laser system (Sec. 3.4). The light
is m-polarized and focused to a waist of 35 um. The intensity and the frequency of
the light can be changed rapidly to control the time dependence of the transverse and
longitudinal fields in the Hamiltonian. The UV laser had an intensity stability better
than 10 %. The linewidth at 230 nm was measured to be ~ 100kHz (Fig. 3.6).

4.2.2 Experimental Setup

The atoms are located at the focus of a high resolution objective that can resolve

individual sites of the optical lattice (Fig. 4.1b). The Rydberg dynamics take place
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in a lattice of depth 55 Eg, where Er = (mh)?/2ma3,, is the recoil energy and
a1y = 1064 nm/ V2. We image the distribution of ground state atoms after removing
Rydberg atoms with an efficiency of 90(3) % by increasing the lattice depth to 2500 Eg,
leading to rapid photo-ionization or expulsion of the anti-trapped Rydberg atoms
(Fig. 4.1¢). We obtain site-resolved fluorescence images of the ground state atoms by
collecting ~ 1000 photons per atom scattered from laser beams in a Raman cooling

configuration [7].

4.2.3 Single atom Rabi oscillations and coherence

We calibrate the transverse and longitudinal fields of the Hamiltonian using sparse
clouds where the average spacing between atoms is much larger than R;,. The location
of the Rydberg resonance (A = 0) is determined by finding the laser frequency which
maximizes atom loss during a long exposure to the UV light, since atoms in the
Rydberg state experience an anti-trapping optical potential (Sec. 3.6). The Rabi
frequency € is determined by measuring single atom Rabi oscillations (Sec. 3.6.5),

and we attain a maximum Rabi frequency 2,4, = 27 x 5.4(1) MHz (The errorbar
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takes into account shot-to-shot intensity fluctuations). € varies 4.9(3) % over the
region of interest due to the Gaussian intensity profile of the UV beam.

To measure the strength of the laser coupling to the Rydberg state, we measure
Rabi oscillations in a sparse cloud where the interactions between the Rydberg atoms
are negligible. A typical single atom Rabi oscillation is shown in Fig. 4.3a. The
decay of the Rabi oscillation is mainly due to shot-to-shot fluctuations of the laser
intensity. In addition we measure the coherence of the atoms in a sparse cloud using
a Ramsey echo sequence: 7/2 - 7 - m - 7 - /2 pulse, where 7 is a delay time. The
ground state fraction is measured at the end of the sequence (Fig. 4.3b). Even for
7 = 0, corresponding to a 27 pulse, the measured ground state fraction is reduced to
~ 0.8, because of laser intensity fluctuations. However, for a total delay 27 = 1 us,
corresponding to 6h/J, we do not observe any decay of the ground state fraction,

indicating that there is no loss of coherence.

(@) (b)
I I I [ I I I I
10 c 1k % _
§oofpr ot
5 S 08¢ % ffffffffffff i
£ s ¢ i
=) o 06 —
c }E /2 /2
E (%)) ! T m T T
§ g 04 -
3 021 ~ -
O
0 0 | | | | |
0 01 02 03 04 05
t (us) T (us)

Figure 4.3: Investigation of single-atom coherence. (a) Single atom Rabi oscil-
lation. Fitted 1/e decay of the amplitude is ~1.5us = 9h/J. (b) Measurement of the
ground state fraction after a Ramsey echo sequence, indicating no loss of coherence
over times longer than the quench times used in this work (~1ps = 6h/J).
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4.2.4 Movement of the atoms during the quenches

The ground-state atoms in our experiment are trapped in an optical lattice. How-
ever, the Rydberg state is anti-trapped by the lattice. There are also other even
stronger forces that can lead to movement of the atoms, mainly van der Waals
forces between atoms in Rydberg states and photon recoil kicks. From the exper-
imentally fitted value for Cjs, we estimate Rydberg atoms accelerate toward each
other with a(r) = %% where a &~ 3.2 x 105m/s? for neighboring Rydberg atoms
and a(v2a1,;) =~ 2.8 x 10°m/s? for next-neighbor Rydberg atoms. This leads to a
displacement of 0.09a;q; (0.01a;4y) for a typical quench time of 200 ns for nearest
neighbor (next-nearest neighbor) Rydberg atoms. We note that the excitation of two
Rydberg atoms on neighboring sites is largely suppressed due to the blockade. Recoil
and anti-trapping forces lead to much smaller displacements of the atoms. In our cal-
culations, we cannot include the movement of atoms during the quenches due to the
tremendous increase in Hilbert space size. One approach to account for some aspect

of the movement is to model its effect as two-particle decoherence, as discussed in

Sec. 4.4.2.

4.2.5 Theoretical calculation of (j

The Cjy coefficient, which determines the strength of the van der Waals interaction,
depends strongly on the principal quantum number. We obtain a theoretical Cs/h =
—1.92(6) MHzym® = —10.6(3) MHz af ,, for the |23P,0,—1/2,1) state at an offset
field of 595 G. The angular dependence of the interaction potential in the P-state is
unimportant in our experiments since the magnetic quantization axis is orthogonal
to the plane of the lattice, leading to an isotropic interaction for atoms in the 2D
plane. For these parameters, h{),q., J > h/7, where 7 ~ 20 ps is the lifetime of the

Rydberg state [66], leading to negligible decay over the relevant timescales.
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We calculate the value of Cy for the state |23P,0,—1/2,1) at 595G with two
different techniques. First we use a perturbation theory calculation in the m; basis
which yields Cg/h = —1.915 MHzpum® (Sec. 2.5.1). As a second approach we use a
pair state ED in the m; basis at 595 G using [87] and perform a basis transformation
to the my-basis (Table. 3.1). A fit to the potential curve then yields Cs. Depending
on the inner cutoff ry for the fit we obtain values between Cs/h = —1.974 MHz 1m®
for ry = 0.7 um and Cg/h = —1.864 MHz pm® at ry = 1 pm which leads us to the error

estimate previously mentioned.

4.3 Short “sudden” quenches

As an initial experiment we study dynamics in the Ising system after a sudden quench,
where the transverse field is switched on quickly compared to h/€). The system
is initially in a product state, with all spins in [|) (|1)), and we image the atoms
after an evolution time 7. From the images, we extract the spin correlators C(r) =
4(S7S7,), = M(S7S7 ) — (S7) (Sf.p)). The correlators C(0,0),C(1,0),C(0,1) and
C(1,1) are shown in Fig. 4.4a-d for QT'/h = /2 (2 = h x 4.05(2) MHz) and varying
detuning A. The correlator C(0,0) is linked to the magnetization as C'(0,0) = 1 —
4(S?)*. We observe a change in the sign of the nearest neighbor correlations as the

detuning A is varied.

4.3.1 Comparison to NLCE dynamical calculations

For such short times, the correlations remain short-range and therefore we can com-
pare our results to calculations obtained using a dynamical version [132] of the nu-
merical linked cluster expansion (NLCE) [121, 133]. The dynamics is computed on
clusters of increasing size (the “order” of the expansion) and the results are ex-

pected to converge if the correlation length is smaller than the cluster size. We

93



(a) C(0,0) (b) C(1,0) (c) c,1) (d) @,

T T T T T T T T T T T T T T T T 02
\
08~ N OO _@96@0?%3
- — - — - —o
04 - o7 =4 -+ —-02
%) | | | | | | | | | | | | | | | |
_§ (e) () (9) (h)
% T T T T T T T T T T T T T T T T 02
5 R0 Lo o
o ¢ ¢ (e} o) dbo
0.8 |- o Qo ¢¢ o) (e} o @ o
Q &% = ¢ Co A Ooo 2 o %o o)
& ? @o%o & o
04 fy Q
| | | | | | | | | | | | | | | L g5
20 10 0 10 20 10 0 10 20 -10 0 10 20 10 0 10

Detuning A (MHz)

Figure 4.4: Sudden quench dynamics. (a-d) Spin correlations after a sudden
quench with QT /h = 7/2 (2 = h x 4.05(2) MHz) at various detunings A. The corre-
lators shown are C'(0,0) (a), C(1,0) (b), C(0,1) (c), and C(1,1) (d). For comparison
we show the fits to dynamics computed with NLCE (solid line) and exact diagonal-
ization on a 4 x 4 lattice with open boundary conditions (dashed line). (e-h) Spin
correlations after a longer quench of QT'/h = 37/2 (Q = h x 5.3(1) MHz) at various
detunings.

find good convergence for times Q7T < 7. The 11th order NLCE results for the
on-site and nearest-neighbor correlations are fit to the measured correlations after
the quench with two free parameters: the van der Waals interaction coefficient Cl
and a scaling factor a corresponding to the Rydberg imaging efficiency. The NLCE
dynamics calculations take into account interactions up to next-nearest neighbors
and experimental imperfections including the finite rise and fall time of € and 2.8 %
anisotropy of the lattice spacing [7], which translates to an 18 % anisotropy of the
interactions on the nearest neighbor sites. We also compare the data to exact di-
agonalization results on a 4 x 4 lattice. From these fits, we obtain an experimental
Cs/h = —1.1(1) MHzpum® = —6.0(3) MHz af,, and a scaling factor a = 0.89(1),
which agrees with the expected detection efficiency. The fitted value of Cy is about

40% lower than the theoretically calculated Cg, which has possible systematic errors
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due to uncertainties in the matrix elements in lithium, in particular at high magnetic

fields, and finite wavefunction size of the atoms on the lattice sites [134].

NLCE dynamics

The numerical linked cluster expansion (NLCE) algorithm used to calculate the dy-
namics in this work is an extension of the NLCE technique for thermodynamic quan-
tities, reviewed in refs. [121, 133]. Our NLCE calculations take into account next-
nearest neighbor (diagonal) interactions, lattice anisotropy, and the finite time for
turning on and off the Rabi frequencies during “sudden” quenches. We discuss some
of the major modifications that are made to the algorithm, assuming the reader’s
familiarity with the standard algorithm.

For systems with the symmetry of the square lattice and only nearest neighbor
interactions, each embedding of a graph on the lattice is dependent only on the topol-
ogy of the graph, which allows for a significant reduction in the number of clusters
that need to be diagonalized. Taking into account next-nearest neighbor interactions
and lattice anisotropy means that this is no longer true, as two topologically identical
graphs may have different graph Hamiltonians. Thus, we break down topologically
identical graphs further into classes of graphs with the same Hamiltonian up to graph
symmetries, each of which we only need to solve once.

For each of these, we then perform a time evolution starting from the initial state
using sparse representations of the Hamiltonian. The initial and final ramp is sim-
ulated by breaking down the overall ramp time into five time steps, and applying
the time evolution between these steps with the appropriate time-averaged Hamil-
tonian. Then, the appropriate correlation functions can be extracted from the final
state. The subgraph subtraction then proceeds as usual, except that each embed-
ding should be treated independently, as the contribution of a graph to a particular

correlator depends on its embedding in the lattice. Finally, we perform an Euler
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resummation starting from the 3rd order to reduce odd-even order fluctuation. Note
that the graphical expansion done here is site-based, rather than link-based.

Finally, we have checked the effect of including beyond-next-nearest neighbor in-
teractions, and the number of time steps, and found that our results are well converged

with respect to them.

Fitting sudden quench dynamics to NLCE results

The correlator dynamics are computed using NLCE for a grid of A and Cg values
at 9th order in the expansion, taking into account the independently calibrated Rabi
frequency Q = 27 x 4.05 MHz. The correlators C(0,0), C(1,0), and C(0,1) are
simultaneously fit to the results using two fit parameters: Cg and a scaling factor «
corresponding to a Rydberg atom detection efficiency. The scaling factor reduces the
nearest neighbor correlators C'(1,0) and C(0,1) as o?. Since C(0,0) = (n?) — (n)?
and n? = n since n is either 0 or 1, we obtain C/(0,0) = (n) — (n)?. This leads to a

corrected correlator C*(0,0) = a (n) — o2 (n)*.

Convergence of NLCE dynamics calculations

To go beyond the regime where the dynamics can be calculated with NLCE, we
perform a longer quench with Q7" = 2.97(7)w. The extracted correlators are shown
in Fig. 4.4e-h. In this case, even the next-nearest neighbor correlations exhibit a
zero crossing as a function of detuning, showing that the system is building up longer
range correlations. The different NLCE orders already stop converging at much earlier
times.

To back up the claim that the quench shown in Fig. 4.4e-h is outside of the regime
which exact state-of-the-art numerical methods can study, we show the results of an
NLCE simulation up to Q7" = 3w. Fig. 4.5 shows the time evolution of the C(0,0)

and C(0,1) correlators. The fitted Cg values and parameters of Fig. 4.4a-d were
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used. The difference between the solid and dotted lines is the order at which the
Euler resummation is started. The series is converged up to times where both of
these curves coincide. For the time corresponding to the quench studied in Fig. 4.4a-
d (2T = 0.57) it is clear that the series is converged and as such we can use it for
fitting. However, for the quench studied in Fig. 4.4e-h (T = 37) the series is far
from converged. This points to the strength of platforms such as ours as benchmark

results for numerical methods.

1

Figure 4.5: NLCE convergence.
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QT pulse lengths shown in Fig. 4.4.

4.4 Near-“adiabatic” quenches

To prepare many-body states with longer antiferromagnetic correlations, we investi-
gate a more adiabatic quench scheme [128, 135, 136], illustrated in the inset of Fig. 4.6.
In the following, we use J = h x 6 MHz for all presented units. We start from the
same initial state but use a soft switch on and off of the Rabi frequency and a linear
ramp of the detuning from A; = 3.3J to a varying Ay. During the detuning ramp, the
Rabi frequency is fixed at €y = 0.9(1)J/h. We explore a variety of detuning ramp
rates A ranging from 8.9.J2/h to 1.6J2/h. For each A we measure correlations at
different times in the ramp. Fig. 4.6 shows the buildup of nearest neighbor and next-

nearest neighbor antiferromagnetic correlations as the longitudinal field is ramped at
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different rates. The buildup of antiferromagnetic correlations starts approximately
at the time the detuning ramp crosses A = 0. For the fastest quench rates we see a
correlation buildup before crossing of the resonance which we attribute to strong non-
adiabaticities. For all quench rates studied, we observe that the correlations reach a
maximum at A/J ~ —2; as would be expected in the adiabatic limit from the phase
diagram in Fig. 4.1a. The peak value of the correlations initially increases as the
quench rate is reduced as one might expect for approaching the adiabatic limit, but
then decreases for slower ramps. This is likely due to decoherence starting to play
a role in the slower quenches. Therefore, we have to take decoherence effects into
account for a numerical modeling of the time-dependence of the correlations.

We performed a phenomenological study of the influence of decoherence on the
near-adiabatic ramps by solving the master equation using the Monte Carlo Wave
Function method (MCWF') on a 4 x 4 lattice [137, 138] (Sec. 4.4.2). Single particle
decoherence comes in the form of decay from the Rydberg state (77) and dephasing
that can be characterized in our system using a Ramsey sequence in a sparse cloud
(T3). In Fig. 4.6, we show MCWF simulations with values of T3 = 20ps and Ty =
0.5 pus. We found that the impact of single particle decoherence on the correlations is
too small to reproduce our experimental results. However, motional effects can lead
to many-body decoherence. Mechanisms leading to atomic motion include strong
attractive forces between atoms in the Rydberg state, laser recoil and changes of the
lattice potential experienced by the atoms due to a difference in the polarizability
between the ground and Rydberg states. These motional effects are stronger in our
system compared to previous optical tweezer experiments [43, 114] due to the light
mass of lithium and the relatively small lattice spacing. This motion of the atoms,
estimated in Sec. 4.2.4, leads to decoherence in the spin system by changing the
coupling J. To model this two-particle decoherence, we approximated the movement

of the atoms as “interaction noise” between nearest neighbor pairs. Although the
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Figure 4.6: Time evolution of spin correlations after near-adiabatic quenches
and comparison with phenomenological decoherence models. Experimental
correlations after near-adiabatic quenches (blue circles for C'(0,1) and blue squares
for C'(1,1)) for different quench rates (left to right panel) and varying final detuning
Ay. These are compared with MCWEF simulations taking into account different types
of decoherence (lines). We studied 7 type decoherence with 77 = 20 ps (green) and
Ty type decoherence with T = 0.5pus (red). The Tj value is chosen as the lifetime
of the Rydberg state and the 7, value is an aggressive lower bound given by our
Ramsey calibration Additionally, we show the combination of T} decoherence with
two-particle “interaction noise” for nearest neighbor pairs (yellow). For the latter,
the decoherence rate (I'y = 1 us™!) was a free parameter chosen to obtain reasonable
agreement with experimental correlations for all four quenches simultaneously. The
shaded regions are s.e.m. of the simulations. For reference, the calculations without
decoherence are also shown (dashed blue lines). Inset, time dependence of the Rabi
frequency €2 and detuning A used for the near-adiabatic quenches. The time for
switching on and off the laser coupling was fixed to t, = 0.6h/J for all quenches. The
maximum total length of the quench ¢, varies from 0.3 us to 0.9 us depending on the
quench rate.
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motion is expected to be coherent at short times, we make the assumption that
the motion is sufficiently chaotic at long times to allow us to use this decoherence
approximation. We implement the “interaction noise” by adding a time-independent
conditional nearest-neighbor dephasing term with rate I'y = 1 us~! to the Lindblad
master equation. As the “interaction noise” is not constrained by our single-particle
calibrations we use its strength as a single free parameter to fit our data. This
phenomenological simulation allows us to achieve better agreement with our data for
the longer quench rates, suggesting that our main source of decoherence is two- or
many-body in nature.

At the end of the ramps, where significant antiferromagnetic correlations have built
up, we find that we can fit the decay of the correlations with distance to an exponential
(Fig. 4.7a). The fitted correlation lengths range from £ = 0.74(6)aq to & = 1.9(2) ajas
depending on A. We compared this data to the results of equilibrium Monte Carlo
calculations at Ay = —2J and €2 = 0 to check if we can describe the system in terms
of an effective temperature (Sec. 4.4.1). While these calculations also give correlations
that decay exponentially, there is no temperature that reproduces both the strength
and range of the correlations. We find a temperature of kg7 ~ 0.51(1)J for matching
the correlation length and kg7, =~ 0.82(4)J when matching the nearest-neighbor
correlator for the data shown in Fig. 4.7a. The fact that these two temperatures are
not within error bars leads us to the conclusion that the system is not equilibrated
at the end of the quench.

Another way to characterize the states created by these slow quenches is by ex-
tracting the probabilities for observing a particular spin configuration in a sub-system.
In Fig. 4.7b, we show the probability of observing different spin configurations in 3 x 3
sub-systems, not correcting for detection fidelities. The two antiferromagnetic states
are the most probable states near the end of the ramp, with an enhancement of a

factor of 16(2) over a uniform distribution in the Hilbert space.
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Figure 4.7: Characterizing many-body
states during and after a slow quench.
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4.4.1 Effective temperature by comparison with classical

Monte Carlo

We compared our data from the near-adiabatic ramps ending at Ay = —2J with
classical Monte Carlo simulations. At this detuning, the fields approximately vanish
and the Hamiltonian has the form of a classical Ising model, H = Z#j %S”fgj We
study the equilibrium behavior of the classical model using the Metropolis algorithm
on a 64 x 64 system [139, 140]. In the case of only nearest neighbor interactions,
we extracted the critical temperature kgT =~ 0.57J which agrees with the known
exact result [141]. Since we have long-range interactions in our system, we added
a next-nearest neighbor interaction term and compared the resulting correlations
and correlation length to our measurements (see Fig. 4.8). Our calculations suggest
that this extended Ising model has a critical temperature of kgT =~ 0.38J. We

cannot simultaneously match the correlation length and the correlation amplitude
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for any given temperature, leading to the conclusion that our near-adiabatic ramps
do not leave the system in a thermalized state. However, our measured correlation
lengths for different quench rates would correspond to temperatures in the range
kgT ~ 0.46 — 0.72J.

a) b)

N
I
|

Correlators

Correlation Length (a)

kT O) kT U)

Figure 4.8: Effective temperature characteristics of an Ising system calcu-
lated with the Metropolis algorithm in a 64 x 64 periodic system. (a) Corre-
lation length versus temperature (blue circles with lines to guide the eye). (b) C'(0,1)
(blue circles) and C(1,1) (red circles) versus temperature. The shaded regions are
bounded by the minimum and maximum values attained in the near-adiabatic ramps.
The dotted lines correspond to the data shown in Fig. 4.6a.

4.4.2 Investigation of phenomenological decoherence models

To investigate if the reduction of the measured correlators after the near-adiabatic
quenches can be explained by single-particle decoherence, we look at phenomeno-
logical models with varying assumptions. All these models are based on exact di-
agonalization (ED) of 4 x 4 systems with periodic boundary conditions. The full
time-dependence of the pulse shape of the near-adiabatic ramps shown in the inset

of Fig. 4.6 is taken into account as well as the measured values of 2 = 0.9(1).J/h
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and A; = 3.3J for J/h = 6.0(3) MHz. It is important to note that a 4 x 4 system
still shows finite-size effects which can lead to deviations of the simulation from our
experimental results. However, it is expected that decoherence reduces the finite-size

effects. All simulations shown include the measured scaling factor a.

Shot-to-shot Rabi frequency fluctuations

Here, we assume that the decay of the single-particle Rabi oscillation is purely caused
by Rabi frequency fluctuations from shot to shot, i.e. the Rabi frequency within a
single run of the experiment is assumed to be constant. We simulate this by ED on a
4 x 4 periodic system at varying Rabi frequency values and average them according to
a Gaussian intensity fluctuation model. We find that the decay of the single particle
Rabi oscillation can be explained by Rabi frequency fluctuations of ~ 3% (standard
deviation) around the mean (o =~ 0.02.J in the case of the ramps with Q = 0.9(1).J/h).
This amount of Rabi frequency fluctuation is consistent with our measurement of pulse
intensity fluctuations. When using this same fluctuation model for the near-adiabatic
quenches we see weak influence on the strength of the correlations (see Fig. 4.9).
We conclude that a model based on shot-to-shot Rabi frequency fluctuations cannot

explain our decay in the many-particle case.

Modeling the decoherence in the time evolution of the near-adiabatic

quenches

In the presence of decoherence, we model our many-body system using a Master
equation formalism. In this approach the equation of motion for the density matrix
is,

d

= —i[H(t), p] + Z L(¢&), (4.2)
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Figure 4.9: Effect of shot-to-shot Rabi Frequency fluctuations. (a) Compar-
ison of a classical model with Rabi frequency fluctuations following a normal distri-
bution of €y = 27 x 4.05 MHz and oqp = 27 x 0.12MHz with the normalized data
of Fig. 4.3. (b) Comparison of ED simulations of the near-adiabatic ramps on a
4 x 4 periodic system without Rabi frequency fluctuations (solid lines) and including
them (dashed lines) for different quench rates A = 8.9J2/h (blue), 4.4J%/h (green),
2.2J%/h (red), and 1.6J2/h (yellow). The effect of the fluctuations on the quenches
is negligible.
where p is the density matrix of the full system which evolves coherently with our
Hamiltonian H and the dissipative part £ which can be written as
N LDon o ot At
L(¢) = 5(201-ch. — Cleip — pelcy). (4.3)
Here, ¢; is the single particle quantum jump operator at site ¢ describing the deco-
herence type and I' is the decay rate determining the strength of the decoherence in
the system.
In order to study the effects of decoherence on the evolution of the system through-
out a quench, it is important to properly choose both the quantum jump operator

¢; and its weight T [137, 138]. Since solving for the full density matrix becomes

intractable even for relatively small systems, we employ the Monte Carlo Wave Func-
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tion (MCWF) method [137, 142, 143]. In this method, it is only required to keep
track of a single wavefunction |¢(t)) where the quantum jump operator ¢; acts at
random times with Poisson distribution. The probability per time step of length dt
of the quantum jump occurring is therefore dp = I'dt |(e; |6(t))|*. By averaging over
many trajectories with different random jumps, it is possible to reconstruct the full
density matrix results. For all of our simulations we used dt = 5 ns which is very short
compared to all energy scales of the system (hdt™ > J, A2, A). We also checked for

convergence with respect to variations in dt.

Single-particle decoherence For T decoherence (spontaneous emission), one has
to take into account a quantum jump operator ¢; = ¢, that decays the single particle
wavefunction |¢;) into the ground state |g;). Since the lifetime of the Rydberg state

is 7 ~ 20ps, we did a simulation with 'y, = 1/7 = 0.05ps™ 1.

For T5 decoherence
(phase noise), the quantum jump operator ¢; = 67 mixes the phase of the |¢;) state.
In a previous section, we showed that 75 > 0.5ps and as such we chose an upper
bound 'y, = 1/2T, = 1ps™!. Fig. 4.6 shows the ED simulations taking into account
these two decoherence sources. For the fastest quench, it agrees very well with our
measured correlations. However, the agreement is much worse for the slower quenches.

We conclude that single-particle decoherence effects are not the main limitation in

our experiment.

Nearest-neighbor pair decoherence Since we cannot explain our results by
single-particle decoherence effects, we look into the simulation of beyond single par-
ticle effects in the following. We estimated in a previous section that within times
of the order of 100 ns two adjacent Rydberg atoms can attract each other and move
considerable distances thereby changing the effective interaction between them. The
effect of the movement of the atoms can be approximately simulated as “interaction

noise”. Since we found that 77 type decoherence had a significant effect on the simu-
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lations, we kept its dissipative term and implement the “interaction noise” by adding

a second dissipative term to our master equation

Z Ly(¢y5) = Z %(2%05% — ¢Lciip — pelicyy). (4.4)
(i) (i5)
Where ¢;; is a quantum jump operator acting on nearest neighbor pair spins. We
choose the quantum jump operator to be ¢é; = (67 — ) ® (67 — I) = |e)e] ®
lej){ej| = nf ® 7§ and the probability with which it is applied in each simulation
step as dp = I'ydt |(e;e; |(t))|°. This is analogous to the MCWF method for single
particle decoherence but expanded to a two-body dissipative process. This quantum
jump operator has the same structure as the interaction term in our Hamiltonian H.

It describes random dephasing between two atoms if both are in the Rydberg state,

which is the effect of “interaction noise”. The full master equation thus looks like

%p: i), )+ L6+ Lol @ 0S). (4.5)
i (i5)

1 as before. Since we do not

For the T dissipative term we used I'y, = 0.05ps™
have prior knowledge of the value for I'j, we vary it to minimize deviations for all
quench rates simultaneously. We find reasonable simultaneous agreement for I'; =
1 st Fig. 4.6 shows the ED simulations using this two-body decoherence approach.
We achieve reasonable quantitative agreement for the longer quenches. The worse
agreement for the shortest quench might be caused by the fact that the movement is
not randomized enough to allow for our simple interaction noise approximation. We

conclude that this two-body decoherence is a good approximation to our experimental

system’s dissipation process.
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Effect on short “sudden” quenches We also implemented the full decoherence
models using MCWF on ED simulations of the sudden quenches shown in Fig. 4.4.

Their effect was negligible as expected given their much shorter pulse times.

4.5 Conclusion

In conclusion, we studied quench dynamics in a 2D Ising model realized with ultracold
atoms coupled to a Rydberg state in an optical lattice. The use of a light fermionic
atom, SLi, allows us to use Pauli blocking in a relatively large spacing lattice to create
2D atomic arrays with high-filling (~ 96%), comparable to what is achieved in atom-
by-atom assembler experiments [144, 145]. Combining the large spacing with the use
of a low-lying Rydberg state, we reached the strong correlation regime with R, ~ q;
and prepared states exhibiting strong short-range antiferromagnetic correlations. We
found good agreement of our data with state-of-the-art numerics for short-time quench
dynamics without taking into account decoherence. In our study of near-adiabatic
quenches we obtained evidence for beyond single-particle decoherence in our system
and observed non-equilibrated final states with longer-range antiferromagnetic corre-
lations. Our new ultracold °Li Rydberg platform opens many interesting directions
for future work. Rydberg excitation in a Fermi gas may allow the exploration of
impurity dynamics in the presence of Pauli blocking effects [146, 147]. Finally, an-
other direction is the use of Rydberg dressing techniques to realize a dipolar Fermi
gas [36, 37, 75, 88]. Recently, we have implemented this technique to for the first time

realize an itinerant strongly interacting system with long-range correlations [14].

4.5.1 Current State-of-the-art

The use of direct excitation of Rydberg atoms in tweezer arrays has ballooned since

our work was first published [43, 50-53]. As a platform, the “interaction noise”
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decoherence we found limited us from studying the physics of phase transitions [148,
149] and Kibble-Zurek dynamics [150-154]. In fact, very recent work has been able to
explore these physics in 2D tweezer array [115]. Nevertheless, the measurements we
were able to do here speak to the flexibility that Rydberg atoms offer as a platform
for quantum simulation.

Furthermore, the motional “interaction noise” we observed in our experiment
has recently been exactly modeled [155]. While it is stronger in our optical lattice
experiments than in optical tweezer arrays. Being able to fully take it into account

will be necessary in order to achieve high quantum-gate fidelities.
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Chapter 5

Subdiffusive charge transport in a

tilted Hubbard system

This chapter presents the work published as

E. Guardado-Sanchez, A. Morningstar, B. M. Spar, P. T. Brown, D. A.
Huse, and W. S. Bakr. Subdiffusion and heat transport in a tilted two-

dimensional Fermi-Hubbard system. Phys. Rev. X 10, 011042 (2020) [13]

After the previous publication, our group went back to focusing on studying
the Fermi-Hubbard model. In this time, we managed to uncover a previously un-
known bad-metallic phase in the repulsive Fermi-Hubbard model [9] and developed an
ARPES analogue protocol for atoms in optical lattices [11]. After these two projects,
we focused on developing the Rydberg dressing platform described in Ch. 3. However,
we were forced to wait while parts for the intensity stabilization (Sec. 3.4.3) arrived.
It is during this time that we became aware of two theoretical publications claiming
the existence of many-body localization (MBL) in tilted one-dimensional interacting
lattice models due to kinetic constraints [156, 157]. We realized that with the addition
of one laser beam we could study this physics and decided to change directions for

the time being. In fact, we took data that we misinterpreted as a transition to MBL
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in a 2D system. However, with the help of our theory collaborators we realized that
what we were actually observing was very slow dynamics due to subdiffusion. In this

way, this project which is equal parts experimental and theoretical came to be.

5.1 Introduction

While non-interacting particles in a tilted lattice potential have been studied for
almost a century [158-161], the dynamics of strongly tilted and isolated many-body
systems with strong interactions have been relatively unexplored. Characterizing the
late-time behavior of such closed quantum many-body systems away from equilibrium
is a topic of fundamental interest. In a series of recent papers [162-168] it was shown
how irreversible dissipative dynamics can emerge from the unitary evolution of closed
quantum systems. Thus generically we expect the transport of conserved quantities
in such systems to behave hydrodynamically at late times as long as the system
does thermalize. On the experimental front, advances in quantum simulation with
cold atoms and other platforms have allowed for unprecedented control of quantum
many-body systems, and for the controlled study of their dynamics [9, 43, 169-173].
For example, in a recent study diffusive charge transport was observed in an isolated
strongly-interacting 2D Fermi-Hubbard system [9]. Here we follow that work by
observing the dynamics of the same cold-atom Fermi-Hubbard system subject to a
strong external linear potential, or “tilt”, and find a crossover to qualitatively different
subdiffusive behavior at strong tilts.

The dynamics of a weakly tilted 2D Fermi-Hubbard model were studied in
Ref. [174] using semiclassical methods. That work formulated an understanding
of the long-time dynamics in which regions with positive local temperature (lower
energy and lower entropy than infinite temperature) heat up and transport charge

“up” the tilt, and regions with negative local temperature [175, 176] (higher energy
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and lower entropy than infinite temperature) transport charge “down” the tilt as the
system approaches an infinite-temperature equilibrium. This infinite-temperature
equilibrium of many fermions hopping in a single band has a spatially uniform
density and zero expectation value of the hopping energy. In contrast, recent
theoretical works [156, 157] explored the prospect of a transition to a localized
phase in strongly tilted interacting 1D systems. While some evidence for this was
found, it was suggested that this was the result of energetically-imposed local kinetic
constraints that conserve the center of mass (COM)—a phenomenon later referred
to as “Hilbert space fragmentation” [39, 40]. This mechanism for nonergodicity at
strong tilts depends on factors such as the range of interactions, the dimensionality
of the system, and the direction of the tilt. In what follows, we explore a system
which does not exhibit such nonergodicity. Thus this work is most directly related to
Refs. [9, 174] which deal with conductivity, although initial motivation for this study
was derived from Refs. [156, 157] which deal with fragmentation, and investigating
any nonergodic aspects of tilted systems is an interesting avenue for future work.

In this work we study the effect of an external tilt on the late-time high-
temperature emergent hydrodynamics of a 2D cold-atom system. This is done by
varying the tilt strength and observing the relaxation of prepared initial density
waves of various wavelengths A. We observe a crossover from a diffusive regime
at weak tilts, where the relaxation time 7 scales like 7 o< A2, to a subdiffusive
regime at stronger tilts, where 7 oc A*. We then construct a hydrodynamic model
that exhibits the same universal crossover, and discuss the underlying physics that
leads to the subdiffusive transport. Using the hydrodynamic model we extract the
infinite-temperature tilt-dependent thermal diffusivity of this system. We further
verify our understanding of the underlying physics by measuring the local inverse

temperature profile of the system, thus confirming a prediction of our theoretical
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model that this profile should correspond to local equilibrium and be displaced by a

quarter wavelength relative to the density profile.

5.2 Experimental Setup

Our system is well-described by the tilted Fermi-Hubbard hamiltonian H = Hpy —
FN fTcom where Hpy is the conventional Fermi-Hubbard Hamiltonian on a square
lattice, F' is the tilt strength, N ¢ is the total number of fermions, and Zcowm is the x
component of the COM. The repulsive on-site interaction energy is denoted by U, and
the single-particle hopping energy by ¢,. We emphasize that the system is tilted in

only one of the lattice directions, which we denote with x. Because of this alignment,
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transport along the y direction does not couple to the tilt potential. Thus each row
of sites at each = position forms a thermal bath along an equipotential of the tilt.
These local baths allow this closed system to thermalize. This is in contrast to the
1D case for which recent works [156, 157] have suggested the possibility of ergodicity

breaking in strongly tilted systems.

5.2.1 Tilt Potential

We realize our tilted 2D Fermi-Hubbard model by loading a balanced mixture of two
hyperfine ground states of °Li into an optical lattice [7]. The tilt is generated by an
ALS MOPA laser which outputs ~ 40 W at a wavelength of 1064nm'. This laser
is aligned to be off-centered from the atoms and focused to a waist of ~ 180m, as
depicted in Figs. 5.1a and 5.2a. The gradient of the resulting potential is uniform
to within 10% across a region of length 40 aj,; (30 pm), where a4 is the spacing of
the optical lattice, and the strength of the potential gradient can be tuned from 0 to
~ h x 5.5kHz/aju;. The beam is oriented such that the gradient is aligned with one

of the two principal axes of the square lattice.

Tilt potential calibration

To calibrate the gradient and characterize its homogeneity across the region of in-
terest, we used the SLM to prepare an initial state consisting of three thin stripes
of width ~ 1 ayy and a separation of ~ 20 a;y, with their long direction oriented
orthogonal to the tilt direction. Each stripe consists of a spin-polarized gas of the
lowest hyperfine ground state of °Li.

For weak tilts, we are able to directly measure Bloch oscillations of these non-

interacting particles. We do so by fitting a Gaussian profile to the density profile

!This laser has since been appropriated by the Molecule Lab. However, an alternative laser
system was built to generate tilt potentials at arbitrary angles using the existing IPG Photonics
laser (Fig. 5.2b).
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Figure 5.2: Tilt potential laser system. This figure was adapted from [92]. (a)
Laser system setup used for this project. (b) Laser system used for tilt potentials at
arbitrary angles in unpublished work.
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integrated along the direction perpendicular to the tilt which is used to quantify the
“breathing” oscillation of the width of the stripes. This is similar to what was done
in [177]. From the theory of Bloch oscillations, we expect the width of each stripe
to oscillate with a maximal half-width of A = 4¢,/F and a period of T' = h/Fa;a4.
Thus, by fitting a sinusoid to the evolution of the width of each stripe, we can extract
the tilt strength at their respective positions. Fig. 5.3a shows an example of such
oscillations.

For stronger tilts, directly measuring the Bloch oscillations becomes challenging
due to their small amplitude. Instead we use a modulation technique analogous to
what was done in [178]. We modulate the lattice potential at frequencies on the order
of the tilt strength. This brings lattice sites that were decoupled due to the tilt into
resonance which results in photon-assisted tunneling. We again measure the width of
the thin stripes versus modulation frequency and observe a broadening of the stripes
at resonance. Fig. 5.3b shows an example of such a measurement.

We corroborated that for the same potential strength at intermediate tilts, the
gradient extracted using the two techniques agrees. In the case of tilt potentials at
arbitrary potentials, analogue protocols were developed where the main difference was
that instead of initializing a profile of three thin stripes, we divide each stripe into 3
squares resulting in a spatial profile of 9 squares in a 3 x 3 distribution aligned with
the lattice axes. With the laser system shown in Fig. 5.2b, we are able to generate
tilt strengths of up to F' = h x 8.3(1) kHz/ a;s; at an irrational angle of 32.8(4)° from
the lattice axes although these tilt strength seem to still be too small for our system
size in order to observe true Hilbert space fragmentation physics. Instead, we might
have observed some slow down of the heating up to infinite temperatures explored in
this chapter. Rather than continue exploring these two dimensional tilt potentials,

we decided to resume the Rydberg dressing project described in Ch. 6.
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Time (ms) Modulation Frequency (kHz)

Figure 5.3: Tilt potential calibration. (a) Bloch oscillation method for charac-
terization of tilt strengths. Each graph corresponds to a measurement of the local
gradient at the position of one of the three stripes. The measured tilt strength is
F = h x 1.64(3) kHz/ a4 with a maximal difference of 4.6% between stripes. (b)
Lattice modulation method for characterization of tilt strengths. The measured tilt
strength is F' = h x 3.19(7) kHz/ a4y with a maximal difference of 7.5% between
stripes.

5.2.2 Spatial Light Modulator

A spatial light modulator (SLM) is used to project sinusoidal potentials of tunable
wavelength along the direction of the gradient, and also remove any harmonic con-
finement from trapping potentials in the region of interest, similar to what was done
in [9]. This allows us to prepare initial density modulations of tunable wavelength.
We also add “hard walls” in the direction perpendicular to the gradient in order to
contain the atoms in that direction and keep the average density constant over the

experimental runtime (see Fig. 5.1a).

5.2.3 Experimental parameters

The atoms are adiabatically loaded into the lattice plus SLM potential at zero gradient

(no tilt). The sinusoidal component of the SLM potential is chosen such that the
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resulting atom-density wave varies spatially with 0.0 < (n;) < 1.2 (see Fig. 5.1b-c),
where n; = ;4 +n; . We also performed experiments with smaller-amplitude density
waves and found no qualitative difference in our results as shown in Sec. 5.2.4. Once
the initial density wave is prepared we suddenly turn off the sinusoidal component
of the potential created by the SLM, and turn on the tilt potential, thus initiating
the dynamics. We focus on a square region of interest with a size of 35 x 35 lattice
sites and measure only the single spin component (n; +) using fluorescence imaging [7]
since in a spin-balanced system (7;) = 2 (7, 4).

We performed all experiments at an optical lattice depth of 7.4(1) Er, where
Er/h = 14.66kHz is the recoil energy and h is Planck’s constant. This leads to
a hopping rate of t;,/h = 820(10) Hz. We work at a magnetic field of 595.29(4) G
nearby a Feshbach resonance centered on 690 G. This leads to a scattering length of
472.0(9) ay, where ag is a Bohr radius, which translates to an interaction energy of
U/t, = 3.9(1) in the Fermi-Hubbard Hamiltonian. We tune the tilt strength F' to
values of up to Fay/t, &~ 6 which allows us to explore tilts well above the crossover
from diffusive to subdiffusive dynamics.

It is of note that we do not reach tilt strengths so strong that it would be accurate
to describe our system over the experimental runtime using an effective Hamiltonian
which ezxactly conserves the COM. Therefore we emphasize that this work does not
focus on the physics of fracton-like systems with a strictly conserved dipole moment,
nor does it explore the possible nonergodic dynamics in such systems, although these
topics are an interesting direction for future research [39, 40, 46, 156, 157, 179, 180].
However, our tilted system does show an emergent conservation of the COM in the
long wavelength limit where the potential energy of the tilt dominates the conserved
total energy, and we believe this feature to be universal for tilted interacting lattice
systems with energy and charge conservation as long as the particles are restricted to

a limited set of bands.
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Figure 5.4: Test of linear response. Decay of the amplitude of the density
modulation vs. time for two different initial amplitudes of the modulation. Here
A = 11.46(3)ajatt, Faja/tn = 6.1(2) and U/t = 3.9(1). (a) Shows the amplitudes.
(b) Shows the amplitudes normalized to the baseline at t = 0.

5.2.4 Linear response

Our hydrodynamic model assumes linearity in the amplitude of the initial inhomo-
geneities. In this experiment, we worked with relatively large amplitude density
modulations. In a previous study ([9]), we worked with very small amplitude modu-
lations and fit to a linear hydrodynamic model we developed. In the “tilted” system
studied in this work, we are no longer working close to a ground state, and as such,
the strength of the modulation is not expected to be as important.

Fig. 5.4 shows a comparison between the decay of strong and weak density modula-
tions in a tilted potential. We observe that when we normalize the sinusoid amplitude
and look at its decay, there is no measurable difference between the decays within the

errorbars. This justifies working with strong modulations in this work to reduce the

statistical error in the measurements for a fixed number of repetitions.
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5.3 Results

Our experimental protocol consists of preparing initial density waves of various wave-
lengths in a potential with tilt /' and imaging the system’s density profile after it
has evolved under its own unitary dynamics for some time t. We analyze our data
by averaging all measurements from a certain wavelength, tilt, and time, and we
also average the density in the direction perpendicular to the tilt. This yields the
averaged density profile along the tilted direction as a function of time, as shown in
Fig. 5.1c. For each wavelength, tilt, and time we fit the density profile to a sinusoid,
n(z,t) = n+ A(t) cos (¢(t) + 2mx/A), after adjusting for any small amount of atom
loss, with the wavelength being fixed by the fit to the initial profile. We extract both
the phase ¢ and amplitude A of the sinusoidal fit as a function of time, normalizing
the amplitude by its initial value A(0). The main results of this paper are derived

from tracking the decay of the amplitude A(?) with time.

5.3.1 Early-time dynamics

Any change in the phase with time is a result of the distance the center of mass “falls
down” the tilt as the system heats up in the lowest band of the lattice potential. More
precisely, an initial state with energy density corresponding to a finite temperature
in the non-tilted Fermi-Hubbard system will slide down the gradient of the tilted
potential. As this happens the tilt does work ~ F'Axcom per particle for a bulk shift
of Axcowm, and this work gets converted locally to kinetic and interaction energy in the
system (the t;, and U terms) [174]. Since the ¢, and U terms can only accommodate
up to an energy of order ~ t;, +U per particle before reaching infinite temperature, the
shift of the COM of the system cannot be more than ~ (¢, +U)/F. We observe phase

changes during the early-time dynamics that are consistent with this approximate
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Figure 5.6: Time decay of density waves. Fitted normalized relative amplitudes
of the periodic density modulation (circles) vs. time for wavelengths 11.46(3) (green),
15.16(5) (orange), 19.33(7) (purple), and 23.3(2) (pink) in units of a;.. The lines
are exponential fits to the decay at late times after any initial average heating (phase
change). (Insets) Log-log plot of the fitted decay times vs. wavelength (yellow circles)
and a power law fit of the form 7 o A* (green line). (a) Dataset for tilt strength
Faa/tn, = 0. (b) Dataset for tilt strength Fa;q/t, = 2.00(3).

bound as shown in Fig. 5.5. We corroborate that the atoms are not excited to higher

bands using a technique described in [11].

120



5.3.2 Late-time dynamics

At late times we observe an approximately exponential decay of the density
modulation (see Fig. 5.6). We fit an exponential to these curves to extract
decay times 7 as a function of A and F. This is done at tilts Fapy/t, €
{0,0.39(1),0.99(3),2.00(3), 3.88(9),6.1(2)} and for initial density waves with wave-
lengths A/ajue € {11.46(3),15.16(5), 19.33(7),23.3(2)}. We also use A\/ajq = 7.69(3)
for Faj/t, ~ 6 as the decay time of the longest-wavelength modulation becomes
very large for this tilt. Decay times that we observe vary increasingly with the tilt
strength F, from 1—5 hi/t;, at zero gradient up to 103—10% i/t;, for Fay:/t, ~ 6. At
each value of the tilt strength we fit a power law of the form 7 o« A* to our measured
decay times. Diffusive relaxation has a characteristic 7 oc A dependence (a = 2),
while values of o > 2 indicate slower subdiffusive dynamics. Fig. 5.6 shows the full
analysis for two of the values of F. From the extracted exponents a we observe
a crossover from diffusive relaxation at weak tilts, where o ~ 2, to subdiffusive
behavior with an exponent of a@ &~ 4 at stronger tilts. This crossover is shown in
Fig. 5.7 along with the theoretical prediction of our hydrodynamic model.

Our observation of diffusive dynamics at weak tilts is consistent with the analysis
of Ref. [174], and with the diffusive transport observed in previous experiments on the
same system at F' = 0 [9], albeit at lower temperatures. The crossover to subdiffusion
with a ~ 4 at strong tilts was, until now, previously unobserved, and its observation
and explanation is the main result of this work. Below, we construct a hydrodynamic
model of our system to help explain these observations. We also further test our
understanding of the mechanism behind the subdiffusive transport by experimentally

verifying our model’s predictions for the local temperature profile.
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5.4 Hydrodynamic Model

We denote the non-tilt energy density due to t;, and U terms by e(x,t), and the
number density of fermions by n(z,t). Our system is, on average, uniform along the
y direction, so e and n are assumed to only depend on x and t. n is a conserved
density and so is € = e — Fxn, the total energy density including the tilt potential.
For nonzero tilt, our system heats up to near infinite temperature within the
lowest band, where the thermodynamic properties are readily calculated using the
high-temperature expansion. There are then three unknown transport coefficients in
the most general formulation of our model: diffusivities for each of the two conserved
densities and a thermopower coefficient which might be significant for this system
since the energy and atom transport are strongly coupled by the tilt. Our data
does not have enough detail to allow us to estimate all three of these transport
parameters. However, in the stronger-tilt regime where 7 ~ \*, a tilt-dependent
thermal diffusivity is the only transport coefficient that enters in the relaxation, and
thus this one parameter can be determined from our measurements. We therefore

present our hydrodynamic model in this strong-tilt regime in Sec. 5.4.1, and encourage
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interested readers to see the supplemental material of Ref. [13] for a more detailed

presentation of the theory that includes the weaker-tilt diffusive regime.

5.4.1 Simplified Model

Let us first consider the infinite temperature equilibrium that our system thermalizes
to at late times. This is a limit of zero inverse temperature (8 — 0) and infinite chem-
ical potential (u — o0), with a finite spatially uniform Su; we call this equilibrium
value . This uniform equilibrium has atom number density 7 = 2e%# /(1 + eﬁ_“)
per site and zero expectation value of the hopping kinetic energy (the ¢, term in the
Hamiltonian). It is convenient when separating the energy into tilt and nontilt terms
to choose the interaction term at each site to be U(ny — (n/2))(n, — (7/2)). This
choice amounts to changing the total energy and potential V' (z) by constants, so it
does not change the physics. With this choice, the equilibrium nontilt energy density
vanishes: e = 0.

The density profile at finite long times has an additional sinusoidal component:
n(z,t) =+ Age /7 cos kx with k = 27/ (choosing the origin so there is no added
phase in the argument of the cosine). In the strong tilt, long time, small k regime we
are considering now, this density profile is at local equilibrium with a time-dependent
and spatially nonuniform inverse temperature 3(z,t). We assume the system is also
near global equilibrium, so we work to lowest order in Ag and . Near position
x, if we have local equilibrium in the tilted potential V(z) = —Fx in this high
temperature limit, the density is given by n(z) = 2e8¢+F2) /(1 4 f+F2)) Qo in the

long wavelength limit we are considering here, the density gradient is

Z_Z = Fn(1-2) B(a) (5.1)
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For positive § the sign of this density gradient is familiar: at equilibrium, the density
increases as one goes to lower potential energy, since the atoms are favored to sit
at lower-energy positions. At negative temperature for fermions in a band, higher-
energy positions are instead favored, so the density gradient is of the opposite sign.
Quantitatively, the product F'8 captures how much a system at inverse temperature
B “notices” the tilt F'. Thus indeed we expect that when the system maintains local
equilibrium, dn/dx o F 3 holds to leading order near 5 = 0. It follows that to leading
order the temperature profile is given by —Agke /" sinkr = Fa(l — (7/2))8(z, ).
Using this result, along with a high temperature expansion to write e as a function
of 3 to leading order, we obtain the nontilt energy profile
n

e(z,t) = % <4t,% + UQZ (1 — 5)) ke "7 sin kx (5.2)

at local equilibrium to lowest order in Ay and k. Now that we have determined the
profiles of n and e assuming local equilibrium, next we consider the dynamics and use
energy and number conservation to determine the relaxation time 7. In the regime
we are now considering, the rate-limiting bottleneck is the transport of nontilt energy
(heat) through the system. This limits the rate at which tilt energy can be converted
to heat and dissipated to the rest of the system, and thus the rate at which the whole
system relaxes.

The relaxation of the number density implies, via the continuity equation for atom

number, an atom number current density of

A
gn(z, ) = e T sinka . (5.3)
kT

This current density flows locally along the tilt direction, locally converting tilt energy
to nontilt energy. In addition, there is a heat current jj(z,t) = —Dy,Ve(z,t) flowing
due to the temperature gradients, where Dy, (F') is a tilt-dependent thermal diffusivity.
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Conservation of energy is then
¢ = Dy, Ve + Fj, , (5.4)

showing the contribution of heat diffusion and the conversion of energy from tilt to
nontilt due to the atom current j,. In the strong tilt regime we are considering,
the two terms on the RHS of Eqn. (5.4) are each much larger in magnitude than
the LHS: the motion of the atoms converts tilt energy to nontilt energy and this is
dissipated by thermal transport, while the amplitude of the inhomogeneities decays

slowly (Di,k?7 > 1). In this strong tilt regime, the decay rate is

I Dykt no(, M
— = (1 + 02T (1- ) < Duk? (5.5)

and the condition for the validity of this regime is

k2 (4& + UQE (1 - g)) < F?. (5.6)

We use Eqn. (5.5) to extract the infinite-temperature thermal diffusivity Dy, (F)
as a function of tilt strength F' in the regime consistent with 7 oc A* and plot the
result in Fig. 5.8.

From the validity condition of Eqn. (5.6) we can also estimate the location of the
crossover shown in Fig. 5.7. Plugging in the experimental values of U/t, = 4 and
n = 0.6, and any value of k from the experimental range ka;.; € [27/24,27/12], we
get the condition that « &~ 4 when Fau;/ty, > 1, which is consistent with the data
shown in Fig. 5.7. A more complete model is detailed in the supplemental material of
Ref. [13], and this model is used to derive the superimposed curve of Fig. 5.7 which
agrees quantitatively with our experimental results. This more detailed model also

gives the thermal diffusivity Dy, in terms of all of the transport coefficients, including
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the thermopower. We therefore conclude that our hydrodynamic model captures the
essential physics leading to the main observation of this paper: the crossover from
diffusive to subdiffusive relaxation with 7 oc A* as the tilt becomes strong.

The infinite-temperature thermal diffusivity Dy, (F) that we are able to measure in
this long-wavelength limit is the thermal diffusivity in the presence of a tilt potential
and the absence of a mass current. In this long-wavelength limit (k — 0) the heat
current becomes much larger than the mass current: j, ~ Agk?/F > j, ~ Aok®/F?.
In the limit of small tilt, this thermal diffusivity must be of order t,a?,,,/h, with
an order one prefactor that depends on 7 and U/t,. In the large tilt regime where
Fay, > 4ty this heat must be conducted by processes that are second-order in the
hopping, with one uphill hop and one downhill hop and the intermediate virtual
state off-shell in energy by Fa;.. This produces an effective matrix element ~
t2/F for these processes, which should result in Dy, ~ 1/F? at large F'. But our
results are actually in an intermediate regime of F', where we are able to access this
subdiffusive regime, but we are not fully in the large F' regime where one step in the
tilt energy is large compared to the interaction U and the bandwidth 4¢; for motion

along equipotential rows. The results in Fig. 5.8 seem consistent with matching on
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Figure 5.9: Local inverse temperature. Near infinite temperature, the density
of singles can be used for thermometry. For a tilt strength of Fayy/t, = 3.4(1)
(potential is V(z) = —Fx) and periodic modulation of wavelength 7.69(3) ajat:, we
measure the average single component density (green) and the density of singles (not
shown) in order to extract the local inverse temperature of the cloud (orange). (a)
The measured average single component density (green circles) and extracted inverse
temperature [t (orange circles) with sinusoid fits (solid lines) after a decay time of
15.1A/t,. In the case of the inverse temperature, the dashed line is the predicted
inverse temperature profile from the density fit and local equilibrium (Eqn. 5.1). The
fitted offset of the inverse temperature is Bt, = —0.002(8) in agreement with an
infinite average local temperature. (b) The amplitude of the density (green) and
inverse temperature (orange) modulations vs. time (circles) with exponential decay
fits (solid lines). (inset) Shows the phase difference of the sinusoid fits between the
single component density and the extracted local inverse temperature vs. time (yellow
circles).

to these expected small- and large-F' limiting behaviors, but we leave quantitative
theoretical estimation of Dy, (F') for future work.

The picture we have laid out in this section is one where, at strong tilts and long
wavelengths, the system quickly achieves local equilibrium, locking the local inverse
temperature to the density profile (Eqn. (5.1)). As the density profile decays, local
number density currents flow, and by conservation of energy this necessitates the
flow of nontilt energy in the system. It is this flow of nontilt energy that we show
bottlenecks the relaxation in the large F' regime, and thus Dy, sets the relaxation rate

of the system. This mechanism only relies on the fact that the system does thermalize,
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has a finite maximum kinetic and interaction energy per particle, and obeys energy
and charge conservation. Thus our qualitative conclusions are not specific to the
Fermi-Hubbard system we study but can be considered universal. A prediction of
this understanding is local equilibrium between [(x,t) and n(z,t) summarized in
Eqn. (5.1). We verify this prediction by measuring the single component density and
singlon occupancy profiles in our system and solving for the inverse temperature in the
atomic limit, which is an effective method of thermometry at such high temperatures.
In Fig. 5.9a-b we show both the density and local inverse temperature profiles, the
decay of both of their amplitudes, and the phase difference between them in time
(inset). From this we see that the §(z,t) profile is at local equilibrium near infinite
temperature (6 = 0), locked at a quarter wavelength phase shift from the density
profile, and both profiles decay together in time, as predicted by our understanding

of the subdiffusive regime of this system.

5.4.2 Complete hydrodynamic model

A full derivation of the complete hydrodynamic model taking into account the charge
and energy conservation laws of the system is presented in the supplemental material
of Ref. [13]. The derivation works by writing down the currents in term of entropic
“forces” and their Onsager’s reciprocal relations including a crossterm. We can calcu-
late these relations using a high-temperature expansion of the entropy. The resulting
system of equations can be used to find regimes of charge dynamics characteristically
diffusive (oc k?) and subdiffusive (o< k%) as a factor of the tilt strength. In the limit

of large F' (and/or small k) we find that the slowest decay rate can be written as

D nn 2
=~ F—;h (S - S”6> K (5.7)

2
See See
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where Dy, is the thermal diffusivity and s;j are the high-temperature expansion terms

of the entropy.

5.4.3 Simultaneous fitting of the model

As explained in the previous sections, there is a fast and a slow exponential decay
solution to our hydrodynamic model. In the strong tilt regime, Eqn. 5.7 shows that
the slow decay depends only on the thermal diffusivity Dyy,.

We perform a simultaneous fit to all wavelengths at a given tilt strength as ex-

plained in the supplement of [9]. The fitting function is

A(t) = Age T PR (5.8)

and it is fitted only to the late-time decay. Here, Aj is a fitting parameter that
can vary for each wavelength while Dy, is fitted globally to all wavelengths. The
parameters F' and k are fixed according to our experimentally measured values. The
fitting to this model is shown in Fig. 5.10 and the extracted diffusivities are shown

in Fig. 5.8.

5.5 Conclusion

We studied a new regime of thermalization in a square-lattice cold-atom Fermi-
Hubbard system subject to an external linear potential. Our system was effectively
closed and evolved under its own unitary dynamics starting from prepared initial
density waves of various wavelengths \. By observing how the amplitude of these
initial density modulations evolved in time we found two qualitatively different hy-
drodynamic regimes and a crossover between them: At weak tilts the system relaxes
diffusively, in accordance with previous theory [174] and experiments [9]. At strong

tilts, we found a new regime where the system relaxes subdiffusively with a decay
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Figure 5.10: Simultaneous fitting of hydrodynamic model. Fitted normalized
relative amplitudes of the periodic density modulation (circles) vs. time for wave-
lengths 7.69(3) ajuu (yellow), 11.46(3) ajy (green), 15.16(5) ayqy (orange), 19.33(7) ajan
(purple), and 23.3(2) a4 (pink) at different tilts. The lines are simultaneous fits of
the hydrodynamic model to the long-time decay after the initial average heating
(phase change). We are able to extract the thermal diffusivity through this fitting
method.

time 7 that scales as 7 oc A*. We argued that this subdiffusive behavior is a result of
having to “drain” the large reservoir of tilt energy via the bottleneck of heat transport
en route to global equilibrium, and is captured effectively by a hydrodynamic descrip-
tion with the system remaining near local equilibrium. To test this understanding we
measured the local temperature profile and do indeed find that the system remains
near local equilibrium as it relaxes in this subdiffusive regime. In the supplemental
material of Ref. [13], we also develop and present a more complete and detailed hy-
drodynamic model that quantitatively captures the universal crossover between the
diffusive and subdiffusive regimes (Fig. 5.7). In the strongly tilted regime we used
our model to extract the tilt-strength-dependent thermal diffusivity that bottlenecks
the relaxation of the system. One perspective on why this novel subdiffusive regime
appears is that in the strong-tilt and long-wavelength limit the center-of-mass poten-
tial energy is the dominant part of the total energy, so energy conservation becomes

an emergent almost-conservation of the center of mass.
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In contrast to recent theoretical studies of potential ergodicity breaking in tilted
1D systems [156, 157], in this work we focused on the novel effects of a tilt on the
approach to equilibrium in an isolated system that does indeed thermalize. This
thermalization was robust because our system had a tilt potential along only one
of the two principal axes of the lattice, and the resulting unconstrained motion of
atoms in the perpendicular direction produced good thermal baths in each such row
of the lattice. To arrest this thermalization more microscopically, one avenue of future
exploration will be to apply tilt potentials along both axes of the lattice to suppress

such local thermalization.

5.5.1 Outlook

After this project, we focused back on Rydberg dressing but had to wait yet again
due to technical difficuilties. In this second interim, we re-built the laser system
to generate tilt potentials as shown in Fig. 5.2b. With this update we were able
to generate much stronger tilt potentials. However, we very quickly realized that
even these stronger tilt strength were not enough to reach the regime of Hilbert space
fragmentation due to our large system sizes. We did however study a second transition
to subdiffusive dynamics for the system in all directions. In this regime we found that
the system did not quickly reach local equilibrium in the same way that we found
in Fig. 5.9. Potentially showing that we were starting to peek into the pre-thermal
regime of fractonic physics. It is my hope that in the future, this 2D tilted system
will be studied again and our theory collaborators have some ideas of how to proceed.

It is also important to note that recently, non-ergodic dynamics have been observed

in tilted 1D Fermi-Hubbard chains [181].
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Chapter 6

Quench Dynamics of a Fermi Gas
with Strong Long-Range

Interactions

This chapter presents the work published as

E. Guardado-Sanchez, B. M. Spar, P. Schauss, R. Belyansky, J. T. Young,
P. Bienias, A. V. Gorshkov, T. ladecola, and W. S. Bakr. Quench dynamics
of a Fermi gas with strong nonlocal interactions. Phys. Rev. X 11, 021036

(2021) [14]

In this chapter, we present experiments were we induce long-range interactions in
a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approxi-
mately described by a t —V model on a square lattice where the fermions experience
isotropic nearest-neighbor interactions and are free to hop only along one direction.
This is the first quantum simulation using a degenerate quantum gas with strong
non-local interactions. Much effort has been dedicated to this goal, including explo-
rations of quantum gases of magnetic atoms [20-23] and polar molecules [24, 25] by

many groups.
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6.1 Introduction

Ultracold gases are a versatile platform for studying quantum many-body physics [3].
The ability to engineer and control the interactions in these systems has played an im-
portant role in observing novel phases of matter including crossover fermionic super-
fluids [182] and dipolar supersolids [20, 183, 184] and in studying out-of-equilibrium
dynamical processes such as thermalization [21]. Recent efforts have focused on de-
generate quantum gases with long-range interactions including those of magnetic
atoms [20-23] and polar molecules [24, 25]. These systems may be distinguished
from other quantum platforms with long-range interactions including ions [26, 27],
Rydberg atoms [15], polar molecules in optical tweezers [28, 29] and atoms in optical
cavities [30], in that the particles are itinerant. This can lead to an interesting inter-
play between interactions, kinetic energy and quantum statistics. Rydberg dressing
has been proposed as an alternative route to realize quantum gases with tunable
long-range interactions [17-19]. Experimental demonstrations of Rydberg dressing
[55, 71-75, 88-91] have been performed with localized atoms or quantum gases of
heavy atoms where observation of motional effects has been elusive.

Here we investigate Rydberg dressing of lithium-6, a light fermionic atom. Its fast
tunneling in an optical lattice allows us to study the quench dynamics of itinerant
fermions with strong, purely off-site interactions.

Atoms in a quantum gas resonantly coupled to a Rydberg state experience strong
van der Waals interactions many orders of magnitude larger than their kinetic energy
for typical interatomic spacings, hindering access to the interesting regime where
the two energy scales compete. At the same time, the population of atoms in the
Rydberg state decays on a timescale of tens of microseconds, short compared to
millisecond motional timescales. Rydberg dressing addresses both of these issues.
Using an off-resonant coupling, the atoms are prepared in a laser-dressed eigenstate

|gar) =~ |g) + B |r) of predominant ground state (|g)) character and a small Rydberg
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(Ir)) admixture, where g = % < 1, Q is the coupling strength, and A is the laser
detuning from the transition frequency. This enhances the lifetime of the dressed
atom by a factor of 1/3% relative to the bare Rydberg state lifetime. On the other
hand, the interaction between two atoms a distance r apart is reduced in strength and
can be approximately described by a tunable softcore potential V(1) = Vipay/(r +79)
with strength Via ~ 5°Q and range 7. ~ (|Cs/2A])Y5, where Cg is the van der
Waals coefficient for the Rydberg-Rydberg interaction. Early experiments with 3D
quantum gases were limited by rapid collective atom loss attributed to a blackbody-
induced avalanche dephasing effect [71-74]. Nevertheless, Rydberg dressing has been
successfully used to entangle atoms in optical tweezers [88], perform electrometry in
bulk gases [91], and study spin dynamics [55, 75, 90].

In this work, we report on the single-photon Rydberg dressing of a 2D °Li Fermi
gas in an optical lattice in the presence of tunneling. This results in a lattice gas of
fermions with strong, non-local interactions. We characterize the interaction potential
using many-body Ramsey interferometry [75]. A careful study of the lifetime of
spin-polarized gases shows different behavior compared to previous Rydberg dressing
realizations, with the lifetime depending strongly on the density but not on the atom
number at fixed density. We also observe that the presence of tunneling in the system
has no effect on the lifetime. Finally, we use this platform to realize a 2D coupled-
chain t — V model consisting of interaction-coupled chains and study the short-time
quench dynamics of charge-density wave states, finding that the strong attractive
interactions inhibit the motion of the atoms.

Theoretical studies of the 1D ¢ — V model [47, 48] have shown that it can exhibit
Hilbert-space fragmentation (HSF) [39, 40], in which dynamical constraints “shatter”
the Hilbert space into exponentially many disconnected subspaces. Like many-body
localization (MBL) [41, 42] and quantum many-body scars [43, 44], HSF is a mecha-

nism whereby isolated quantum systems can fail to reach thermal equilibrium after a
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quantum quench [45]. In the t — V' model, HSF arises in the limit of strong interac-
tions, where the number of “bond” excitations, i.e., nearest-neighbor pairs of fermions,
joins the total fermion number as a conserved quantity. Our mixed-dimensional t —V

model inherits properties of the 1D version, including the HSF in the limit ¢t/V — 0.

6.2 Experimental setup

Our system consists of a degenerate Fermi gas of °Li atoms in a square optical lattice
of spacing apy = 752nm (Fig. 6.1a) [12]. We apply a 591.8(3) G magnetic field
perpendicular to the 2D system. We load spin-polarized gases prepared in a state
that may be labeled at high fields as |nl,my, ms,m;) = |25,0,—1/2,1) = |1), or
alternatively 25,0, —1/2, —1) = |3) depending on the measurement. We have control
over the initial density profile by employing a spatial light modulator. Using a 231 nm
laser beam with linear polarization parallel to the magnetic field and propagating
along the lattice x-direction, we couple the ground state atoms to the [28P,0, —1/2)
Rydberg state. By tuning the intensity and the detuning of the dressing light, we
have real-time control over the isotropic soft-core interaction potential between the

atoms in the gas (Fig. 6.1b).

6.2.1 Simulation of a ¢t — V model

The lattice system is described by a single-band spinless fermion Hamiltonian

H=—t g (¢ + hoe) + g TJninj + E ding, (6.1)
{i.d) i#i i
where t is a tunneling matrix element, V;; is the off-site interaction [Eq. 3.6 and

Fig. 6.1b(inset)] and d; is the potential due to single-particle light shifts contributed

by the lattice and Rydberg dressing beams. Since our dressing beam is tightly fo-
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Figure 6.1: Realization of a ¢ — V model with Rydberg dressing. (a) The
Rydberg dressing beam propagates along the z-direction of the lattice, effectively
decoupling 1D chains in the y-direction due to a differential light shift. Hopping of
fermions (red dots) along the z-direction is unaffected. Interactions are isotropic.
(b) °Li pair potentials for dressing to the state |28 P,m; = 0,m, = —1/2) calculated
using [87]. The color of the lines represents the overlap with the target pair-state
(|28 P,0, —1/2)®|28 P, 0, —1/2)) coupled via the laser with Rabi coupling {2 and detun-
ing A from the target state. Inset: Calculated dressed potential for 2 = 27 x7.66 MHz
and A = 271 x 35 MHz taking into account the overlaps to all pair potentials (orange
solid line). The dashed green line represents the expected dressed potential for a
simple van der Waals potential with Cs = h x 90.19 MHza$ .. Pink points are the
interaction at each lattice distance taking into account the wavefunction spread of
the atoms.

cused with a waist of 16.1(4) um, the change in § between rows in the y-direction,
which is orthogonal to the beam propagation axis, is much larger than ¢ (for typical
experiments presented in Sec. 6.5, the minimum change in § between rows is > 3t
near the intensity maximum of the Rydberg dressing beam). On the other hand,
because of the large Rayleigh range of the beam (~ 3.5mm), the variation of § along
the beam propagation direction (z-direction) is negligible. To first approximation, we
drop the light shift term and the hopping along the y-direction. Thus, we can rewrite

our Hamiltonian as a coupled-chain t — V' model of the form

.\ L Vii o .
H=-t Z (¢ +hee) + Z #nznj (6.2)
(.4)a i#]
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Figure 6.2: Rydberg dressing of °Li. (a) Level diagram showing the hyperfine
ground states of °Li directly coupled to the 28 P Rydberg state using linearly ()
polarized light at a field of 592 G. The basis used is |m;, ms). (b) Rydberg dressing
scheme for two atoms in different hyperfine ground states |1) and |2) coupled to the
Rydberg state |r). € is the Rabi coupling of the laser, A is the detuning from the
resonant transition between |1) and |r), Ag is the hyperfine splitting between |1)
and |2) and V(R) = —Cg/R® is the van der Waals interaction potential between two
Rydberg states |r).
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6.2.2 Ground and Rydberg states used in the experiments

We work at a magnetic field of 592 G pointing in the direction perpendicular to the 2D
lattice plane. At this field, both the ground and Rydberg states are in the Paschen-
Back regime such that we can approximately label them using the |nl, m;, mgs, m;)
basis (Fig. 6.2a). The hyperfine ground states we use are |1),|2) and |3) numbered
from lowest to highest in energy and having m; = 1,0, —1 respectively. For the
Rydberg states, the nuclear spin splitting is negligible so states with different m;
can be considered degenerate. This approximation means that two atoms in different
hyperfine ground states will couple to Rydberg states at the same energy (both labeled
as |r)) and interact with each other via a van der Waals potential (Fig. 6.2b).

In our quenches and lifetime measurements, we always start with a spin-polarized
gas of either state |1) or |3) atoms (both states are essentially equivalent and we

happen to have take some of our data in this paper using one or the other). However,
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for the interferometry measurements, we need to take into account the dressed inter-
action potential between two atoms in different hyperfine ground states which couple

to |r).

6.3 Rydberg-dressed interaction potentials

In order to characterize the Rydberg dressing interaction potentials, we perform
many-body Ramsey interferometry between states |1) and |2) = [25,0,—1/2,0) fol-
lowing the procedure introduced in Ref. [75]. Starting from a spin-polarized band
insulator of atoms prepared in state |1) in a deep lattice that suppresses tunneling, a
7/2 radiofrequency pulse prepares a superposition of state |1) and |2), which acquire
a differential phase during a subsequent evolution for time 7" in the presence of the
dressing light. Unlike Ref. [75], the splitting between the hyperfine ground-states
of ®Li is comparable to the detuning A of the dressing laser (Fig. 6.3a), and both
states are significantly dressed by the light (Sec. 3.3.3). First, we obtain the spa-
tial profile of the Rabi coupling strength Q(z, j) by measuring the population of |2)
after a m/2 — T — /2 pulse sequence using a detuning A = 27 x 100 MHz. The
large detuning is chosen so that the interactions, whose strength scales as 1/A3, are
negligible, while the single-particle light shifts that scale as 1/A lead to a large dif-
ferential phase during the evolution. From these measurements, we extract the waist
of the beam (16.1(4) pm) and measure Rabi couplings up to Q = 27 x 9.48(8) MHz
(Fig. 6.3b). The measured spatial profile of the Ramsey fringe frequency confirms the
rapid variation of d; along the y-direction, while no variation of d; is observed along
the x-direction within the statistical uncertainty of the measurement (~ 1 kHz).

To probe interactions in the system, we switch to a smaller detuning A =
27 x 35 MHz. We measure density correlations of state |1) (C(r) = (ni(r)n,(0)) —

(ny(r)) (n1(0))) after a spin-echo pulse sequence (7/2 — T — 7 — T — 7/2) which
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eliminates differential phases due to the light shift. Fig. 6.3¢ shows the measured
correlations after different evolution times 7" compared to the theoretical expectation
(Sec. 3.8.1). Fig. 6.3d depicts the evolution of the nearest-neighbor and next-nearest-
neighbor correlations with the correlation offset C'(co) subtracted. This offset is
attributed to correlated atom number fluctuations in the images [75]. We find good
agreement with the theoretical model, which predicts a nearest-neighbor (next-
nearest-neighbor) attractive interaction |Vio| = hx4.2(2) kHz (|Vi1| = hx1.37(6)

kHz) (Fig. 6.1b)

6.4 Lifetime Characterization

To probe coherent many-body physics in our system, the lifetime 7 of the sample has
to be larger than the interaction and tunneling times. Atoms resonantly excited to
a Rydberg state are lost from our system on a timescale of tens of microseconds for
several reasons: photon recoils due to spontaneous emission and large forces due to
anti-trapping optical potentials and due to interactions with other Rydberg atoms.
Due to its Rydberg admixture, an isolated dressed atom decays with a lifetime 7. =
70/%, where 7y is the lifetime of the Rydberg state determined by radiative and
blackbody-driven transitions to other states. Previous experiments with frozen 2D
and 3D systems have observed much shorter lifetimes than 7.g [71-75]. A simplified
model used to explain these experiments considers a blackbody-driven decay of the
dressed state to a pure Rydberg state of opposite parity. The first such contaminant
appears in the system on a timescale 7. = /(N 3?) where 7pp is the blackbody
lifetime of the Rydberg state and N is the number of atoms in the system. This atom
interacts with other dressed atoms through resonant state-exchange characterized by
a (3 coefficient, broadening the Rydberg line. In particular, other atoms at a certain

facilitation radius (|Cs/A|)Y/? will be resonantly excited, leading to avalanche loss of
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Figure 6.3: Measuring Rydberg dressed interactions with many-body Ram-
sey interferometry. (a) Energy level diagram for °Li showing that the dressing of
the other hyperfine ground state cannot be ignored. Here A/27 is varied between
30 MHz and 100 MHz while Ay/27 = 75.806(1) MHz. (b) Ramsey fringe frequency
measured at a detuning of A = 27 x 100 MHz at different positions in the cloud.
The frequency is almost constant along the propagation direction of the beam (pur-
ple). In the transverse direction (yellow), it varies rapidly as expected for a tightly
focused Gaussian beam. Insets: (i) Ramsey oscillations at two representative posi-
tions in the cloud. (ii) Sample image of one spin state in the cloud at 7' = 20 us.
(c) Spin correlations for different spin-echo pulse times at Q@ = 27 x 7.66(7) MHz
and A = 27 x 35 MHz. Measurement (top) and theoretical expectation (bottom).
(d) Nearest (green) and next-nearest (orange) neighbor correlations after subtract-
ing C'(c0). Lines correspond to the expected correlations. Experimental error bars
correspond to standard error of the mean.

140



all the atoms from the trap. Experiments in 2D have indeed observed a collective
lifetime close to 7, and a bimodal atom number distribution in lifetime measurements
[75]. We have not observed such bimodality in our 2D systems, and the lifetime
does not depend strongly on N at fixed density (App. 6.4.1). In this regard, our 2D
SLi experiments are closer to 8"Rb experiments with 1D chains where the avalanche
mechanism is suppressed to some extent [90].

The atom number decay in a frozen system of 7 by 7 sites is shown in Fig. 6.4a.
The decay is not exponential, indicating a density-dependent lifetime which we extract
by fitting different sections of the decay curve. For dressing to |28P), 7o = 30.5pus
[66]. We measured the density-dependent lifetime for @ = 27 x 9.25(8) MHz at
three different detunings, A = 27 x (30, 40,60) MHz (Fig. 6.4b). Around half-filling,
the collective lifetime is ~ 0.37.¢ for A = 27 x 30 MHz and approaches 7. for the
smallest densities (n ~ 0.1). For comparison, perfect avalanche loss would predict
7, = 0.087.g.

Next, we measure the lifetime of the dressed gas in the presence of tunneling,
which has been a topic of theoretical debate [108, 109]. We measure the density-
dependent lifetime for different lattice depths, spanning the frozen gas regime to a
tunneling of 1.7 kHz (Fig. 6.4c). We do not observe any change of the lifetime with
tunneling. A potential concern in this measurement is that the tunneling along the
z-direction may be suppressed by uncontrolled disorder in ;. We rule this out by
preparing a sparse strip of atoms and observing its tunneling dynamics. As expected
for a clean dressed system, the tunneling dynamics along the z-direction is almost
identical to the case without the dressing light, while the dynamics is frozen along
the y-direction (Fig. 6.4c(inset)). Combining the results of our interferometry and
lifetime measurements, we achieve a lifetime of several interaction times measured by

the figure of merit Vig7/h ~ 20 [90] for a mobile system with n = 0.5.
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Figure 6.4: Lifetime of itinerant Rydberg dressed fermions. (a) Atom number
vs. dressing time for a frozen gas. The red circles correspond to measurements on a
system of 7 by 7 sites. Dashed-dotted line corresponds to an exponential fit to the
first 5 data points and dashed line corresponds to the expected single-particle dressed
lifetime 7eg. (b) Measured lifetime in a frozen gas in units of 7.g vs. the initial density
for @ = 27 x 9.25(8) MHz and A = 27 x (30 (green), 40 (purple), 60 (orange)) MHz.
Inset: Same measurements in units of ms. (c) Lifetime vs. initial density for different
tunnelings: 0.01 kHz (green), 0.25kHz (purple), 1.0kHz (orange), and 1.7 kHz (pink).
The data is taken with 2 = 27 x 6.04(8) MHz, A = 27 x 30 MHz. Insets: (i) Tun-
neling dynamics of atoms sparsely initialized on a strip along the y-direction with no
dressing light. From this data, we extract a tunneling rate ¢t = h x 1.7kHz. (ii) Same
measurement in the presence of the dressing light. (iii) Same measurement in the
presence of the dressing light but with the strip along the z-direction. Experimental
error bars correspond to standard error of the mean.
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6.4.1 Dependence of lifetime on atom number at fixed den-
sity

In our search for a suitable Rydberg state to use for our dressing experiments, we ex-
plored many different principal quantum numbers. We eventually chose 28 P because
it gave us a good ratio between the measured collective lifetime and the theoretical
single-particle lifetime, while also having a large enough Cjy to achieve strong nearest-
neighbor interactions in the lattice. We explored larger principal quantum numbers
but found much shorter lifetimes than the expected values. One possible reason is the
coupling to neighboring pair-potentials that have non-zero overlaps with the target
state at close distances (Fig. 6.1). However, the general behavior of the many-body
lifetimes with atom number and geometry of the cloud remained the same over sig-
nificantly different principal quantum numbers. In particular, the lifetime showed
no strong dependence on the atom number at fixed density over the range we could
explore in the experiment. Fig. 6.5 shows the initial lifetime vs. the initial atom
number for 2D systems 4 aj,;; wide and of variable length along the direction parallel

to the dressing beam for the 31 P and 40P Rydberg states.

6.5 Quench Dynamics

To probe the interplay of interactions and tunneling in our system, we use light
patterned with a spatial light modulator to initialize the system in a charge density
wave state of atoms in state |3). The initial density pattern approximates a square
wave with period A = 4 aj,¢ and width w = 7 aj., with the average density oscillating
between n ~ 0 and n ~ 0.7. (see Figs. 6.6a-b). Dynamics in a lattice with ¢ =
h x 1.7 kHz is initiated by suddenly turning off the patterning potential while keeping
walls in the y-direction as in [13]. We average the density profiles over the non-hopping
direction and observe a qualitative change in the dynamics as we increase V/t (here
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Figure 6.5: Dependence of lifetime on atom number at fixed density. (a)
Initial lifetime for 2D systems with different initial atom number dressed to 31P.
Measurements are made in a 2D rectangular system of small width ~ 4aj and
variable length along the dressing beam direction. We observe no strong dependence
on the atom number. The Rabi frequency is approximately constant over the entire
system. For this data, 2 = 27 x7.02(5) MHz, A = 27 x60 MHz and n = 0.8. (b) Same
as in (a) but for systems dressed to 40P. For this data, 2 = 27 x 5.6(2) MHz, A =
27 x 40 MHz and n = 0.55. (insets) Raw data with exponential fits to extract the
initial decay rate. Experimental error bars correspond to standard error of the mean.

V = |Vio|) from 0 to 2.9(2) (Fig. 6.6¢). To emphasize the evolution of the pattern,
we scale the data to account for atom loss during the evolution (SecS. 6.5.1). In the
non-interacting quench, we observe that the phase of the charge density wave inverts
at a time ~ K/t as is expected for a coherent evolution [9]. For strong interactions,
the decay of the charge density wave slows down and the system retains a memory
of its initial state for longer times.

This can be understood as an interplay between two conservation laws: the in-
trinsic U(1) particle number (N = 3°_#,) conservation as well as an emergent con-
servation of the number of bonds N, = > . NaNgiq1. The latter becomes a conserved
quantity when the longer range interactions are ignored, and in the limit of infinite
V/t. States of the form |...0011001100...) along the hopping direction, which the im-

printed density pattern attempts to approximate, would be completely frozen in the
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limit of infinite V/t [47]. For a large but finite V', moving a single atom (and hence
breaking a bond) costs an energy of up to 3V, which is energetically unfavorable, and
hence leads to reduced relaxation dynamics.

To quantify the difference in the dynamics of the different quenches, we em-
ploy two different methods. The first is to fit a sinusoid of the form n(z,t) =
Asin (2mz /A + ¢) + B to determine the amplitude of the wave relative to its mean,
A/B (Fig. 6.6d). The fit is restricted to |z| < 6ajg, and ¢ is fixed by the initial

pattern. The second method is to calculate the autocorrelation function

covg(n(z,0),n(x,t))

) = . 0)ou(n@ 1)

(6.3)

where cov, and o, are the covariance and the standard deviation respectively
(Fig. 6.6e).

Further confirmation that the slower decay of the charge density waves is an inter-
action effect is obtained by varying the average density in the initial state. Fig. 6.7a
shows these initial states and their time evolution for V/t = 2.9(2). As the average
density of the initial state is decreased, it approaches a “sparse” limit where the prob-
ability of having two neighboring atoms is negligible. In this regime, the system is
effectively non-interacting and we recover the phase inversion during the evolution.
Since these measurements are done at fixed power of the dressing light, they rule out

disorder-induced localization as a mechanism for arresting the dynamics.

6.5.1 Atom loss during charge density wave dynamics

We observe an atom loss of ~ 30% for the longest evolution times for the dataset
with the maximum initial density and interaction strength. For the dataset where
interaction was varied by changing the dressing laser intensity, the lifetime gets longer

for smaller interactions due to the reduction of the Rydberg dressing parameter § =
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Figure 6.6: Interaction dependence of quench dynamics of a charge density
wave. (a) Average initial state density profile for the quench measurements. (b)
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Density profile time evolution for interactions V/t = [0,0.78(7), 1.61(8),2.9(2)]. Color
scale is the same as in (a). (d) Fitted relative amplitude of density profile vs. time.
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lowest to highest. (e) Autocorrelation function of the density pattern. Colors are
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Figure 6.8: Atom loss during charge density wave dynamics. (a) Atom num-
ber decay over the quenches shown in Fig. 6.7. Each color represents a set with
a different initial density. Circles are measured data with error bars and lines are
simple exponential decay fits. The dressing parameters were 2 = 27 x 6.99(8) MHz
and A = 27 x 30 MHz. (b) Lifetime vs. the initial average density of the charge
density wave as extracted from the data in (a). This behavior is in agreement with
our observations shown in Fig. 6.4. Experimental error bars correspond to standard
error of the mean.

%. For the dataset where the initial density was varied at fixed interaction strength,
the lifetime increased for lower initial densities (Fig. 6.8). These measurements are

in accordance with our observed density dependent lifetime measurements shown in

Fig. 6.4.

6.6 Numerical simulations

We use exact diagonalization to simulate the quench dynamics of our experiment.
As the simulation for the full experimental 2D system (~ 7 x 21) is computationally
intractable, we compare instead to numerics on a 2x 11 t—V model with only nearest-
neighbor interactions and no tunneling along the y-direction and find qualitative
agreement with the measurements.

We account for atom loss during the experiment via a Lindblad master equation

op = —i(ﬁeﬂcﬁ — ﬁﬁgﬁ) +I'), &iﬁ&I. Here, Hyg = H — ng is the effective non-
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Hermitian Hamiltonian [H is the ¢t — V Hamiltonian from Eq. (6.2)] and the second
term describes quantum jumps corresponding to atom loss with rate I'. We solve the
master equation using the quantum trajectory approach [185]. Note that the anti-
Hermitian term in H.g is a constant due to the particle number conservation, and
hence it can be neglected since H.z and H generate the same dynamics (up to the
normalization, which only serves to determine the timings of the quantum jumps).

The initial state for each trajectory is sampled directly from the experimental data
taken at ¢ = 0. We pick a 2 x 9 region centered on 2 of the 4 density peaks from the
experimental images (Fig. 6.6a). In order to reduce boundary effects, we add empty
sites on each end of the chain. We average the resulting dynamics over the different
trajectories, whose number is comparable to the number of experimental snapshots.
Next, we analyze the averaged simulated dynamics using the same methods we use
for the experimental data. Fig. 6.6 shows the comparison of the experiments with
these numerical simulations. We find good qualitative agreement with this small 2D
coupled-chain numerical model.

The 2D nature of the system is important for fully understanding the relaxation
time-scales in our system. In particular, in a one-dimensional system, moving a single
atom from the initial “...00110011...” pattern (and hence breaking a bond) costs an
energy V. However, in the coupled-chain ¢t — V' model with isotropic interaction,
breaking a bond now costs up to 3V for the idealized initial charge density wave
state. We thus expect the 2D system to have slower relaxation rate compared to a
1D system with the same interaction strength.

To verify this, we perform additional numerical simulations on a single chain of 21
atoms. Similarly to our 2D simulation, we sample 1 x 19 arrays from the experimental
snapshots at t = 0 and add empty sites at the ends. We find that the atoms spread
quicker than they do in the ladder geometry and have worse agreement with the

experimental results. Fig. 6.9 shows a comparison between the 1D and 2D coupled-
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Figure 6.9: Role of interchain couplings in slowing down charge density
wave relaxation. Numerical simulations of a ¢ — V' model with tunneling ¢ along
only one direction and isotropic nearest-neighbor interactions V. (a) Fitted relative
sinusoid amplitude to observed (circles) and calculated quench dynamics of 1 x 21
systems (shaded regions). The colors represent the different interaction strengths
V/t = [0 (green),0.78(7) (orange),1.61(8) (purple),2.9(2) (pink)] explored in the
experiment. (b) Same comparison as in (a) but for calculations done on 2 x 11
systems. This is Fig. 4d. Experimental error bars correspond to standard error of
the mean.

chain numerical simulations on the one hand and the experimental data on the other.
This comparison highlights the importance of the interchain interactions in order to
fully understand our system.

The remaining discrepancy between some of the numerical and experimental re-
sults could be attributed to several factors. First, we are only able to simulate a
smaller system than in the experiment. We expect that adding additional chains
could further slow down the relaxation dynamics. Second, our modelling of the atom
loss via a Lindblad master equation assumes that the decay rate is exponential. How-

ever, as we showed in Sec. 6.4, the decay rate is actually non-uniform in space and

time, and depends on the density.
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6.7 Conclusions

Our results present a new frontier in quantum simulations of itinerant lattice models
with strong off-site interactions. By working with larger r./a, spinless fermion models
may be used to explore equilibrium phases such as topological Mott states [186] or
cluster Luttinger liquid phases [31]. Moreover, the system considered in this work
provides a platform for the experimental realization of models prevalent in theoret-
ical studies of non-equilibrium dynamics. For example, the 1D ¢ — V model can be
mapped to the XXZ spin chain, which has long been studied in the context of many-
body localization [187-189]. This model and variants thereof have also been proposed
to harbor dynamical phases intermediate between full MBL and thermalization [190—
192]. Our work lays the foundation for future studies of such phenomena, as well as
other non-equilibrium dynamical regimes including prethermalization [193]. Further-
more, the close spacing between the hyperfine ground states of °Li also opens the
door for the simultaneous dressing of two spin states and the exploration of extended
Fermi-Hubbard models.

The present experiment has allowed us to start probing coherent dynamics in
t — V models, which we plan to continue to explore especially upon improving the
interaction-lifetime figure of merit. For example, for small but finite ¢/|V], it is
possible to access a complex hierarchy of timescales for quench dynamics that depends
crucially on the initial state [48].

Our work motivates further theoretical and experimental exploration of the mixed-
dimensional models in the context of both the non-equilibrium dynamics and ground-
state physics [194] such as meson formation. Another promising direction based on the
interplay of Rydberg-dressing and atomic motion is vibrational dressing [195, 196],
non-destructive cooling [197], an exploration of multi-band physics, as well as the
use of microwave-dressed Rydberg states, allowing for both attractive and repulsive

dressed 1/r? dipole-dipole interactions [80].
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There are several possible approaches to improve the interaction-lifetime figure
of merit. Enhancement of the Rabi coupling by over an order of magnitude may
be achieved using a build-up cavity [198]. For a single-particle system, the figure of
merit scales with 2 at fixed 5, while further enhancement of the collective lifetime is
expected in this regime due to shrinking facilitation radii for increasing A. Increasing
Q by a factor of 10 at fixed § leads to facilitation radii that are a factor of 10'/3
smaller. For almost all states coupled to by blackbody radiation, the facilitation radii
become less than one site. If collective loss is completely inhibited, the combined
effect is to enhance the figure of merit by a factor of ~ 30. The principal quantum
number used in this experiment was chosen to keep the range of the interaction on
the order of one site. Relaxing this constraint or alternatively using a larger lattice
spacing would allow using longer-lived Rydberg states at higher principal quantum
number. Using electric fields to tune close to a Forster resonance results in deep
potential wells that may be exploited to enhance the figure of merit by a factor of
|A|/Q [199] and potentially allow us to achieve repulsive interactions. Finally, the
single particle lifetime can be improved and the collective black-body induced atom
loss may be completely eliminated by operating at cryogenic temperatures (improving

the figure of merit by a factor of ~ 6 for fixed dressing laser parameters).
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Chapter 7

Conclusion and Outlook

In this thesis we have reported on a variety of experiments where we have expanded
on the capabilities of our existing Fermion Quantum Gas Microscope [92, 93]. We
emphasized the physics of Rydberg atoms and particularly the development of Ryd-
berg dressing for 6Li atomic systems. Our experiments show that quantum simulation
experiments based on single-photon excitation of lithium-6 atoms to Rydberg states
can serve as a highly-flexible platform to study different types of many-body systems.

We were able to study the quench dynamics of a many-body 2D quantum Ising
model well beyond the capabilities of state-of-the-art numerical simulations. While
our realization using an optical lattice is not ideal, our experiments point to the im-
portance of taking into account motional decoherence effects [155]. This decoherence
is stronger in our optical lattice, but is also present in tweezer arrays and should be
taken into account to achieve high fidelities of quantum-gates.

Outside of Rydberg physics, we studied the 2D tilted Fermi-Hubbard model ob-
serving the onset of subdiffusive charge dynamics with tilt strength. To understand
the slow relaxation dynamics we built an universal hydrodynamic theory for the equi-
libration of systems at infinite temperatures. From this model, we uncovered that

the observed subdiffusive charge dynamics were a product of slow heat diffusion in
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the system which bottlenecks the density relaxation to maintain local equilibrium.
At much stronger tilt strengths we would expect the system to reach a nonergodic
phase where the system is dynamically constrained.

Finally, we successfully implemented the technique of Rydberg dressing in our
system of °Li atoms. Using this novel platform, we were successful in realizing an
itinerant lattice model in the presence of long-range interactions. We realized a
spinless t — V' model and observed a clear effect of interactions on the relaxation
dynamics of charge density waves. This experiment opens the door to studying many

more strongly-interacting quantum gas systems which are detailed in Ch. 6.

7.1 Outlook

With the advent of other platforms working towards degenerate quantum gases with
long-range interactions such as polar molecules [24, 25] and magnetic atoms [20-23],
it will be important to fix the non-trivial decay mechanisms currently limiting Ry-
dberg dressing experiments. In Sec. 3.7 we detailed the lifetime characterization of
our system and present evidence that the limiting decay mechanism in our system
is not satisfactorily explained by complete black-body avalanche loss observed in ex-
periments with Rb and Cs systems. Instead, we observe a density-dependent lifetime
which is invariant on the atom number. It is possible that our observed decay is
could be explained by direct excitation to pair-states which have non-zero overlap
with the target Rydberg state at short distances. An issue like this one could be fixed
by changing the geometry of the system. Recently in our lab, we have developed a
technique to build Fermi-Hubbard models using optical tweezers which should allow
us to vary the spacing between the lattice sites. This opens the door to studying the
dependence of the lifetime on the spacing when coupling to a fixed Rydberg state, or

alternatively, coupling to states with larger principal quantum numbers.
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Another option is to modify the Rydberg dressing scheme away from the simple
picture described in Sec. 2.8. One such way, is to further explore the Forster res-
onances that can be tuned using magnetic or electric fields (App. C) and dress on
a strong avoided-crossing of the target pair-state with a different state. For lower
principal quantum numbers, the resonant lines should move much closer in distance
and allow us to explore very strong repulsive interacting models.

Without truly fixing the limiting decay mechanism, we can still increase the coher-
ence by enhancing the Rabi coupling of our UV laser. In Table 2.5 we show that the
interaction-to-lifetime ratio increases with power. At 230 nm it is not really feasible
to get a laser with a much larger power output than our current laser. However, we
could employ the use of a build-up cavity [198] to greatly enhance the Rabi coupling
and thus the coherence.

For Rydberg systems in general, the black-body radiation does not only lead to
global loss through the avalanche mechanism. It also limits the bare Rydberg lifetimes
of single atoms for large principal quantum numbers (Eq. 2.13). The only way to avoid
these decay channels is to build cryogenic experiments where the black-body spectrum
no longer couples nearby Rydberg states so strongly. There are currently multiple

groups building or designing Rydberg cryogenic experiments.
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Appendix A

Numerov’s Algorithm

Numerov’s algorithm was developed in 1924 [68] to numerically solve second order

differential equations of the form

(aa_; + a(x)) y(z) =0 (A.1)

y'(x) +a(x)y(z) =0 (A.2)

taking into account corrections up to 5th order of a discrete stepsize h. Eq. 2.8 is an
example of an equation solvable with this method. In this appendix, we will describe
how to derive the algorithm and how to use it to solve for the radial wavefunctions

of Rydberg atoms.

A.1 Derivation

The method essentially works by discretizing the space and using Taylor expansions
to build the function y(z) one step at a time starting on one end. To derivate it, first

you can do a Taylor expansion of y(x, + h) = y,+1 up to 5th order where z,, denotes
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a particular step n in the function:

2 3 4 5

h h h h
Prit = oy o+ Sy Sl O (A

Next, we add both of these functions together to get:

h4
Ynt1 + Yn—1 = 2Yp + hQ?JZ + Eyﬁ” (A-4)

Substituting in Eq. A.2 and using the second-order finite difference’:

h* 0?

Yn+1 + Yn—1 = 2yn - h2ynan - Ea_l’% (CL(xn)y(xn)) (A5)
h?

Yn+1 + Yn—1 = 2yn - h2ynan - E (an+1yn+1 - 2anyn + an—lyn—l) (AG)

Finally, one can solve for either y, .1 or y,_1. In this case, we choose to solve the
function backwards as we know that in the case of Rydberg atoms, the function a(z)
has a much slower rate of change and as such is a nicer place to start the algorithm.
With this consideration, we end up with the following equation which will be useful

to find solutions for wavefunctions in arbitrary potentials:

(24 — 10R2a,) Yp — (12 + h2ap41) Yns1
12 —f- h2(ln_1

Yn—1 =

A.2 Implementation for Rydberg atoms

This algorithm is relatively simple to implement using modern computers. For the
particular case of solving for the wavefunction of Rydberg atoms (Eq. 2.8), we took
a few considerations. First, it is useful to choose a sufficiently small stepsize where

the algorithm is well defined. In our case we used h = 0.005 ay as the equation is

f(:z+h})l—f(w) ~ f(w)—i(w—h) so that f”(x) ~ W _
(z)+f(z—h)

h)—2f
h2
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(f(z+h)*f(r))}*2(f(r)*f(r*h)) _ flat
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written in atomic units. Next, we need to make a good choice of initial parameters
to “seed” Eq. A.7 with. For this purpose, we choose to discretize the space from 0 to
a maximum radius 7, = 2n (n + 15)% where the wavefunction is certainly zero. We

set our initial parameters to:

y(rmax) = Yend = 0 (AS)

y(rmaz - h) = Yend—1 = (_1)n+l+1 X 10710 (A9>

Where (—1)""*1 is an important consideration for the proper integration of dipole
matrix elements with different quantum numbers. We use this values to point-by-
point build the wavefunction using Eq. A.7. An interesting consideration, is that the
algorithm prefers to work with very small numbers so we make sure to divide by 10
if the calculated value of |y,_1| is ever above 1077,

Finally, the last important step is to decide when to stop the algorithm. At close
distances, the potential changes much more rapidly so our choice of h might no longer
be correct. A work around we found was to flag the position at which a(x) changes
sign (same as when the bound energy and the potential are equal) and after that the
first time that |y,—1| > |yn| we set it to 0 and stop the algorithm. Using this we are
able to calculate the radial wavefunctions of Rydberg atoms as shown in Fig. 2.1.

While not in the scope of this thesis, during this PhD, the same algorithm was
used to successfully find the bound states of NaRb molecular potentials. These bound
states were used to calculate Franck-Condon factors in order to design the STTRAP

sequence of a new molecular microscope currently being built in our group.

2From Table. 2.1 we know that the orbital radius increases quadratically with n so this ensures
that we choose a suitably large 7,4, for any principal quantum number 7.
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Appendix B

Calculated C; values of Li

pair-states.

This Appendix presents a summary of calculated Cg values of °Li pair-states with full
angular dependence. The calculations were made as described in Sec. 2.5.1 and span
principal quantum numbers n = {20,50}. It is important to note that we found no
difference in the Cg values for pair states with the same absolute value of |m)|.

From the tables, one can note that only the nP pair-states have a Forster reso-
nance at zero field. Moreover, only n.S pair states have repulsive interactions (Cg < 0)
while the rest are attractive. These calculations helped decide on a single-photon Ry-
dberg dressing design to directly connect our ground-state atoms with nP Rydberg

states.
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’ n ‘ Cl/n*ll

‘ Cg/n*ll ‘ 03/n*11

‘ CG(O)/n*ll ‘ 06(7/4)/71*11 ‘ 06(71'/2)/71*11 ‘

20 | -0.490621 | -1.30832 | -0.654161 | -1.962485 | -1.9624857 -1.9624857
21 | -0.509414 | -1.35843 | -0.679219 | -2.037658 | -2.0376586 -2.0376586
22 | -0.526561 | -1.40416 | -0.702081 | -2.106245 | -2.1062455 -2.1062455
23 | -0.542266 | -1.44604 | -0.723022 | -2.169067 | -2.1690672 -2.1690672
24 | -0.556706 | -1.48454 | -0.742274 | -2.226824 | -2.2268248 -2.2268248
25 | -0.570026 | -1.52007 | -0.760035 | -2.280107 | -2.2801079 -2.2801079
26 | -0.582354 | -1.55294 | -0.776472 | -2.329417 | -2.3294176 -2.3294177
27 | -0.593795 | -1.58345 | -0.791727 | -2.375183 | -2.3751829 -2.3751830
28 | -0.604443 | -1.61184 | -0.805924 | -2.417773 | -2.4177730 -2.4177730
29 | -0.614376 | -1.63833 | -0.819169 | -2.457507 | -2.4575076 -2.4575076
30 | -0.623666 | -1.66310 | -0.831554 | -2.494664 | -2.4946646 -2.4946646
31 | -0.632371 | -1.68632 | -0.843162 | -2.529487 | -2.5294873 -2.5294873
32 | -0.640547 | -1.70812 | -0.854063 | -2.562189 | -2.5621891 -2.5621891
33 | -0.648239 | -1.72863 | -0.864319 | -2.592958 | -2.5929583 -2.5929583
34 | -0.655490 | -1.74797 | -0.873987 | -2.621961 | -2.6219617 -2.6219617
35 | -0.662336 | -1.76622 | -0.883114 | -2.649344 | -2.6493443 -2.6493443
36 | -0.668811 | -1.78349 | -0.891749 | -2.675247 | -2.6752473 -2.6752473
37 | -0.674946 | -1.79985 | -0.899928 | -2.699785 | -2.6997854 -2.6997854
38 | -0.680786 | -1.81543 | -0.907715 | -2.723146 | -2.7231469 -2.7231469
39 | -0.686273 | -1.83006 | -0.915031 | -2.745094 | -2.7450945 -2.7450945
40 | -0.691532 | -1.84408 | -0.922043 | -2.766129 | -2.7661291 -2.7661291
41 | -0.696536 | -1.85743 | -0.928715 | -2.786145 | -2.7861459 -2.7861459
421 -0.701306 | -1.87015 | -0.935075 | -2.805225 | -2.8052259 -2.8052259
43 | -0.705858 | -1.88228 | -0.941144 | -2.823434 | -2.8234348 -2.8234348
44 1 -0.710207 | -1.89388 | -0.946943 | -2.840831 | -2.8408312 -2.8408313
45 | -0.714367 | -1.90497 | -0.952489 | -2.857468 | -2.8574687 -2.8574687
46 | -0.718348 | -1.91559 | -0.957798 | -2.873395 | -2.8733959 -2.8733959
47 1 -0.722164 | -1.92577 | -0.962885 | -2.888657 | -2.8886574 -2.8886574
48 | -0.725823 | -1.93552 | -0.967764 | -2.903294 | -2.9032939 -2.9032940
49 | -0.729335 | -1.94489 | -0.972447 | -2.917343 | -2.9173434 -2.9173434
50 | -0.732710 | -1.95389 | -0.976946 | -2.930840 | -2.9308404 -2.9308404

Table B.1: Calculated Cs values for SLi |nS,1/2,+1/2) ® |nS,;1/2,+1/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(71'/4)/72*11 ‘ 06(71'/2)/71*11 ‘
20 | 3.0797687 | 9.5403891 | 6.7617034 | 12.3190748 | 15.30633808 | 18.29360135
21 | 3.0707908 | 9.5159692 | 6.748775 | 12.2831632 | 15.26934899 | 18.25553455
22 | 3.0611628 | 9.4895449 | 6.7344387 | 12.2446512 | 15.22915048 | 18.21364988
23 | 3.0532504 | 9.4683839 | 6.723766 | 12.2130016 | 15.19736286 | 18.1817239
24 | 3.0419273 | 9.4363715 | 6.7050339 | 12.1677092 | 15.14798133 | 18.12825358
25 | 3.0301324 | 9.4031952 | 6.685861 | 12.1205296 | 15.09692451 | 18.07331965
26 | 3.0166094 | 9.3649297 | 6.663422 | 12.0664376 | 15.03787314 | 18.0093089
27 | 3.0003553 | 9.3186366 | 6.6358519 | 12.0014212 | 14.96622169 | 17.93102208
28 | 2.9796283 | 9.2592573 | 6.6000013 | 11.9185132 | 14.87407227 | 17.82963123
29 | 2.9510654 | 9.1770163 | 6.5497709 | 11.8042616 | 14.74615582 | 17.68804993
30 | 2.9071215 | 9.0499715 | 6.4714573 | 11.628486 | 14.54819304 | 17.46790043
31 | 2.8265265 | 8.8162691 | 6.3264321 | 11.306106 | 14.18355242 | 17.06099873
32 | 2.6172654 | 8.2081752 | 5.9472888 | 10.4690616 | 13.2338634 15.9986652
33 | 0.3348758 | 1.5691428 | 1.798782 | 1.33950356 | 2.860819498 | 4.38213539
34 | 3.7419911 | 11.481356 | 7.994748 | 14.9679644 | 18.34906903 | 21.7301741
35 | 3.3631619 | 10.379877 | 7.3071056 | 13.4526476 | 16.628399 19.8041495
36 | 3.2529224 | 10.059716 | 7.1077416 | 13.0116896 | 16.12851575 | 19.245341
37 | 3.1994038 | 9.9045309 | 7.0114467 | 12.7976152 | 15.88638698 | 18.97515888
38 | 3.1672309 | 9.8114148 | 6.9539063 | 12.6689236 | 15.74122167 | 18.81352008
39 | 3.1454148 | 9.7484024 | 6.9151455 | 12.5816592 | 15.64307574 | 18.70449218
40 | 3.1294258 | 9.702318 | 6.8869326 | 12.5177032 | 15.57136379 | 18.62502415
41 | 3.117054 | 9.6667346 | 6.8652532 | 12.468216 | 15.51604485 | 18.5638737
42 | 3.1070915 | 9.6381403 | 6.8479148 | 12.428366 | 15.47163279 | 18.5148998
43 | 3.0988213 | 9.6144512 | 6.8336171 | 12.3952852 | 15.43487254 | 18.47445978
44 1 3.0917899 | 9.5943495 | 6.8215395 | 12.3671596 | 15.40370663 | 18.44025378
45 | 3.0856935 | 9.576955 | 6.8111362 | 12.342774 | 15.37676186 | 18.41074995
46 | 3.0803035 | 9.5616169 | 6.80202 12.321214 | 15.35303114 | 18.3848485
47 | 3.0757957 | 9.5486458 | 6.7941087 | 12.3031828 | 15.33286159 | 18.36254028
48 | 3.0713433 | 9.5360844 | 6.7867956 | 12.2853732 | 15.3135033 18.3416334
49 | 3.0674262 | 9.5249796 | 6.7802545 | 12.2697048 | 15.29635176 | 18.32299883
50 | 3.0638503 | 9.5148495 | 6.7742977 | 12.2554012 | 15.28071072 | 18.30602013

Table B.2: Calculated Cg values for °Li [nP,1/2,4+1/2) ® [nP,1/2,4+1/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(71'/4)/72*11 ‘ 06(71'/2)/71*11 ‘
20 | 3.70375 9.6359359 | 5.0744761 | 14.815 14.62075819 | 15.12132123
21 | 3.689001 | 9.6087281 | 5.0669051 | 14.756004 | 14.58220348 | 15.08953748
22 | 3.6735845 | 9.579522 | 5.058212 | 14.694338 | 14.54060263 | 15.0545615
23 | 3.6638456 | 9.5562746 | 5.0498794 | 14.6553824 | 14.50732749 | 15.02607425
24 | 3.6460229 | 9.5215441 | 5.0381729 | 14.5840916 | 14.45721509 | 14.98191193
25 | 3.6292211 | 9.4857599 | 5.0250543 | 14.5168844 | 14.40537821 | 14.93559328
26 | 3.6107069 | 9.4447655 | 5.0092139 | 14.4428276 | 14.34572073 | 14.88143818
27 | 3.5891943 | 9.3954968 | 4.9892886 | 14.3567772 | 14.27370731 | 14.81509365
28 | 3.5625848 | 9.3326795 | 4.9628852 | 14.2503392 | 14.18153356 | 14.7290765
29 | 3.526888 | 9.2461466 | 4.9253376 | 14.107552 | 14.05413933 | 14.6088976
30 | 3.4732031 | 9.1131234 | 4.8661533 | 13.8928124 | 13.85777583 | 14.42204803
31 | 3.3765344 | 8.8695727 | 4.7558063 | 13.5061376 | 13.49754393 | 14.07709858
32 | 3.1294358 | 8.2399117 | 4.4669866 | 12.5177432 | 12.56493958 | 13.18015565
33 | 0.5505337 | 1.6303068 | 1.4170023 | 2.20213476 | 2.768792366 | 3.738788865
34 | 4.4654343 | 11.673285 | 6.0557757 | 17.8617372 | 17.65517803 | 18.09092963
35 | 4.0079553 | 10.503443 | 5.5172354 | 16.0318212 | 15.92180711 | 16.42173495
36 | 3.8750095 | 10.165646 | 5.3627752 | 15.500038 | 15.42166518 | 15.9412537
37 | 3.8100801 | 10.002091 | 5.2886807 | 15.2403204 | 15.17975529 | 15.70961168
38 | 3.7707077 | 9.9039136 | 5.244694 | 15.0828308 | 15.0347201 15.5712692
39 | 3.7437433 | 9.8374054 | 5.2152579 | 14.9749732 | 14.93659947 | 15.47807358
40 | 3.7237738 | 9.788697 | 5.193974 | 14.8950952 | 14.86483795 | 15.4102153
41 | 3.7081593 | 9.7510294 | 5.1777269 | 14.8326372 | 14.80941928 | 15.35804483
42 | 3.6954567 | 9.7207117 | 5.1648171 | 14.7818268 | 14.76487446 | 15.31629518
43 | 3.6848088 | 9.6955544 | 5.1542382 | 14.7392352 | 14.72795989 | 15.28184475
44 | 3.6756723 | 9.6741732 | 5.1453556 | 14.7026892 | 14.69662545 | 15.2527224
45 | 3.6676823 | 9.6556421 | 5.1377482 | 14.6707292 | 14.6695013 15.22761575
46 | 3.6605594 | 9.6392694 | 5.1311185 | 14.6422376 | 14.64557208 | 15.20557603
47 | 3.6545895 | 9.625513 | 5.1253904 | 14.618358 | 14.6253816 15.1867179
48 | 3.6486103 | 9.6120211 | 5.1201248 | 14.5944412 | 14.60574651 | 15.1688911
49 | 3.6433304 | 9.6001272 | 5.1154348 | 14.5733216 | 14.58840778 | 15.1530587
50 | 3.6384845 | 9.5892692 | 5.1111811 | 14.553938 | 14.57258834 | 15.13864198

Table B.3: Calculated Cg values for °Li [nP,3/2,4+1/2) ® [nP,3/2,4+1/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(71'/4)/72*11 ‘ 06(71'/2)/71*11 ‘
20 | 2.3634474 | 9.1767562 | 9.5173272 | 9.4537896 | 16.26820913 | 23.7774336
21 | 2.3572976 | 9.160533 | 9.4973288 | 9.4291904 | 16.23717148 | 23.7262874
22 | 2.3506236 | 9.1422357 | 9.4754828 | 9.4024944 | 16.20263014 | 23.6704599
23 | 2.34437 9.1235802 | 9.4623932 | 9.37748 16.1727164 23.6347547
24 | 2.3365105 | 9.1003132 | 9.4337608 | 9.346042 16.12847043 | 23.5624723
25 | 2.3278776 | 9.0737002 | 9.4063087 | 9.3115104 | 16.08093077 | 23.49207218
26 | 2.3178138 | 9.0417724 | 9.3748002 | 9.2712552 | 16.02477251 | 23.41111425
27 | 2.3055609 | 9.001907 | 9.3366425 | 9.2222436 | 15.95539701 | 23.31300653
28 | 2.2897672 | 8.9494135 | 9.2876237 | 9.1590688 | 15.86482032 | 23.18692053
29 | 2.267812 | 8.8751483 | 9.219645 | 9.071248 15.73754515 | 23.01201325
30 | 2.2338153 | 8.7585556 | 9.1145688 | 8.9352612 | 15.53877383 | 22.7415951
31 | 2.1712338 | 8.541783 | 8.9214291 | 8.6849352 | 15.17061819 | 22.24444928
32 | 2.0088716 | 7.9755539 | 8.4205282 | 8.0354864 | 14.21126315 | 20.95506005
33 | 0.3014292 | 2.0014559 | 3.1557185 | 1.20571664 | 4.102086834 | 7.401795785
34 | 2.8965491 | 11.086203 | 11.157154 | 11.5861964 | 19.47201478 | 28.0001456
35 | 2.5945597 | 10.030958 | 10.225848 | 10.3782388 | 17.68550718 | 25.6027177
36 | 2.5075329 | 9.7279813 | 9.957352 | 10.0301316 | 17.17187269 | 24.9115749
37 | 2.4655108 | 9.5824297 | 9.8276345 | 9.8620432 | 16.92465552 | 24.57768843
38 | 2.4403676 | 9.4958699 | 9.749967 | 9.7614704 | 16.77730198 | 24.37779335
39 | 2.4233949 | 9.4378299 | 9.6975005 | 9.6935796 | 16.67825139 | 24.24277103
40 | 2.4110101 | 9.3957765 | 9.6591879 | 9.6440404 | 16.60629428 | 24.14418288
41 | 2.4014677 | 9.3636062 | 9.6296469 | 9.6058708 | 16.55110028 | 24.06817323
42 | 2.3938148 | 9.3379889 | 9.6059392 | 9.5752592 | 16.50703201 | 24.007178
43 | 2.3874865 | 9.3169521 | 9.5863229 | 9.549946 16.47074937 | 23.95671303
44 | 2.3821255 | 9.299251 | 9.5696984 | 9.528502 16.4401441 23.9139469
45 | 2.3774931 | 9.2840573 | 9.5553353 | 9.5099724 | 16.41381384 | 23.87699753
46 | 2.3734101 | 9.2707712 | 9.5427195 | 9.4936404 | 16.39074984 | 23.84452898
47 | 2.3700108 | 9.2594901 | 9.5316593 | 9.4800432 | 16.37098742 | 23.81624423
48 | 2.3666533 | 9.2488049 | 9.5215202 | 9.4666132 | 16.35242395 | 23.79007375
49 | 2.3637099 | 9.2393662 | 9.512395 | 9.4548396 | 16.33593664 | 23.76659865
o0 | 2.3610292 | 9.2308 9.5040636 | 9.4441168 | 16.32094308 | 23.7451723

Table B.4: Calculated Cg values for °Li |[nP,3/2,4+3/2) ® |nP,3/2,4+3/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(71'/4)/72*11 ‘ 06(71'/2)/71*11 ‘
20 | 72.871573 | 178.76251 | 73.384203 | 291.486292 | 260.6043312 | 237.9860298
21 | 73.194583 | 179.54211 | 73.697346 | 292.778332 | 261.7382766 | 239.0136115
22 | 73.479386 | 180.22416 | 73.970151 | 293.917544 | 262.7302364 | 239.9122258
23 | 73.727866 | 180.81923 | 74.208197 | 294.911464 | 263.5957111 | 240.6963093
24 | 73.94583 | 181.34125 | 74.417055 | 295.78332 | 264.3549572 | 241.3842038
25 | 74.137954 | 181.80148 | 74.601255 | 296.551816 | 265.0243594 | 241.9907778
26 | 74.30818 | 182.2093 | 74.764511 | 297.23272 | 265.6175449 | 242.5283298
27 | 74.459656 | 182.57226 | 74.909844 | 297.838624 | 266.1454938 | 243.006805
28 | 74.594999 | 182.8966 | 75.039756 | 298.379996 | 266.6172875 | 243.43445
29 | 74.716387 | 183.18756 | 75.156329 | 298.865548 | 267.0405368 | 243.8181273
30 | 74.825648 | 183.44949 | 75.261305 | 299.302592 | 267.4215723 | 244.1635843
31 | 74.924316 | 183.68607 | 75.356155 | 299.697264 | 267.7657449 | 244.4756648
32 | 75.013696 | 183.90043 | 75.442121 | 300.054784 | 268.0776008 | 244.7584683
33 | 75.094895 | 184.09521 | 75.520263 | 300.37958 | 268.3609829 | 245.0154868
34 | 75.168861 | 184.27267 | 75.591487 | 300.675444 | 268.6191804 | 245.2497068
35 | 75.2364 184.43475 | 75.656563 | 300.9456 268.8550104 | 245.4636668
36 | 75.298554 | 184.58393 | 75.716465 | 301.194216 | 269.0720713 | 245.6606003
37 | 75.354959 | 184.71942 | 75.770952 | 301.419836 | 269.2692478 | 245.839601
38 | 75.407145 | 184.84474 | 75.821325 | 301.62858 | 269.4516141 | 246.0051263
39 | 75.455362 | 184.9605 | 75.867825 | 301.821448 | 269.6200546 | 246.1579683
40 | 75.499864 | 185.06729 | 75.910762 | 301.999456 | 269.7754709 | 246.2990785
41 | 75.540819 | 185.16583 | 75.950449 | 302.163276 | 269.9188911 | 246.4293293
42 | 75.578838 | 185.25724 | 75.987266 | 302.315352 | 270.0519416 | 246.5501865
43 | 75.614125 | 185.34211 | 76.021459 | 302.4565 270.1754757 | 246.6624078
44 | 75.646922 | 185.42101 | 76.053263 | 302.587688 | 270.2903272 | 246.7667638
45 | 75.677449 | 185.49446 | 76.08289 | 302.709796 | 270.3972554 | 246.8639515
46 | 75.705902 | 185.56296 | 76.110527 | 302.823608 | 270.4969769 | 246.9545878
47 | 75.732457 | 185.6269 | 76.136343 | 302.929828 | 270.5900697 | 247.0392288
48 | 75.757272 | 185.68667 | 76.160489 | 303.029088 | 270.6770968 | 247.1183723
49 | 75.78049 | 185.74262 | 76.183101 | 303.12196 | 270.7585643 | 247.1924673
50 | 75.802237 | 185.79504 | 76.204302 | 303.208948 | 270.8348991 | 247.2619165

Table B.5: Calculated Cg values for SLi [nD,5/2,4+1/2) ® |[nD,5/2,+1/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(71'/4)/72*11 ‘ 06(71'/2)/71*11 ‘
20 | 55.043003 | 169.46958 | 119.22624 | 220.172012 | 271.4787883 | 323.302043
21 | 55.28656 | 170.20766 | 119.73105 | 221.14624 | 272.6539731 | 324.6814225
22 | 55.499762 | 170.85372 | 120.17335 | 221.999048 | 273.6828849 | 325.8897995
23 | 55.685755 | 171.4174 | 120.55935 | 222.74302 | 274.5806481 | 326.9442925
24 | 55.848888 | 171.91188 | 120.89808 | 223.395552 | 275.368257 327.869568
25 | 55.992686 | 172.34786 | 121.19686 | 223.970744 | 276.0627478 | 328.685621
26 | 56.120083 | 172.73419 | 121.46171 | 224.480332 | 276.6781964 | 329.4089305
27 | 56.233443 | 173.07803 | 121.69753 | 224.933772 | 277.2260051 | 330.0528855
28 | 56.334723 | 173.3853 | 121.90836 | 225.338892 | 277.7155958 | 330.628533
29 | 56.425558 | 173.66094 | 122.09757 | 225.702232 | 278.1548301 | 331.1450905
30 | 56.507313 | 173.90909 | 122.26799 | 226.029252 | 278.5502989 | 331.6102905
31 | 56.581139 | 174.13324 | 122.42201 | 226.324556 | 278.9075604 | 332.0306615
32 | 56.648011 | 174.33633 | 122.56162 | 226.592044 | 279.2312853 | 332.411656
33 | 56.70876 | 174.52088 | 122.68856 | 226.83504 | 279.525495 332.75802
34 | 56.764095 | 174.68903 | 122.80428 | 227.05638 | 279.79359 333.073725
35 | 56.81462 | 174.84261 | 122.91003 | 227.25848 | 280.0384831 | 333.3621875
36 | 56.861114 | 174.98396 | 123.00739 | 227.444456 | 280.2638904 | 333.6277415
37 | 56.903302 | 175.11236 | 123.09601 | 227.613208 | 280.4687361 | 333.8693245
38 | 56.942338 | 175.23112 | 123.17792 | 227.769352 | 280.6581745 | 334.092658
39 | 56.978413 | 175.34081 | 123.25349 | 227.913652 | 280.8331026 | 334.2987655
40 | 57.011648 | 175.44202 | 123.32343 | 228.046592 | 280.9946139 | 334.4893655
41 | 57.042305 | 175.53541 | 123.38797 | 228.16922 | 281.1436456 | 334.6652375
42 1 57.070739 | 175.62205 | 123.4479 | 228.282956 | 281.2819348 | 334.828514
43 | 57.097126 | 175.70248 | 123.50357 | 228.388504 | 281.4103296 | 334.9801585
44 | 57.12165 | 175.77727 | 123.55537 | 228.4866 281.5297369 | 335.1212325
45 | 57.144475 | 175.8469 | 123.60363 | 228.5779 281.6409231 | 335.2526425
46 | 57.165748 | 175.91182 | 123.64867 | 228.662992 | 281.7446114 | 335.3752555
47 | 57.185601 | 175.97244 | 123.69075 | 228.742404 | 281.8414421 | 335.4897885
48 | 57.204152 | 176.0291 | 123.73012 | 228.816608 | 281.931968 335.596922
49 | 57.221508 | 176.08214 | 123.76699 | 228.886032 | 282.0167164 | 335.6972355
50 | 57.237764 | 176.13184 | 123.80158 | 228.951056 | 282.0961498 | 335.791319

Table B.6: Calculated Cg values for SLi [nD,5/2,4+3/2) ® |[nD,5/2,+3/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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’ n ‘ Cl/n*ll ‘ C2/n*11 ‘ Cs/n*ll ‘ CS(O)/TL*H ‘ 06(77/4)/n*11 ‘ 06(77/2>/n*11 ‘
20 | 22.484735 | 145.37462 | 212.2876 | 89.93894 288.5794063 | 500.131835
21 | 22.588789 | 145.99518 | 213.18437 | 90.355156 | 289.8079829 | 502.2536215
22 | 22.679002 | 146.53331 | 213.97464 | 90.716008 | 290.8804593 | 504.121942
23 | 22.757664 | 147.00283 | 214.66438 | 91.030656 | 291.8163135 | 505.752519
24 | 22.826611 | 147.41475 | 215.26975 | 91.306444 | 292.6374809 | 507.1835485
25 | 22.887348 | 147.77804 | 215.80372 | 91.549392 | 293.3617245 | 508.445718
26 | 22.941121 | 148.1 216.27711 | 91.764484 | 294.0036546 | 509.5646185
27 | 22.988935 | 148.3866 | 216.69864 | 91.95574 294.5751438 | 510.560875
28 | 23.031622 | 148.64277 | 217.07553 | 92.126488 | 295.0860074 | 511.4515645
29 | 23.069877 | 148.87263 | 217.41382 | 92.279508 | 295.5444518 | 512.250972
30 | 23.104279 | 149.07961 | 217.71854 | 92.417116 | 295.9573098 | 512.970994
31 | 23.13532 | 149.26662 | 217.99395 | 92.54128 296.3303744 | 513.6217075
32 | 23.163412 | 149.4361 | 218.24363 | 92.653648 | 296.6685074 | 514.2115795
33 | 23.188908 | 149.59015 | 218.47066 | 92.755632 | 296.975892 514.747893
34 | 23.21211 | 149.73055 | 218.67765 | 92.84844 297.2560744 | 515.2368225
35 | 23.233274 | 149.85883 | 218.86684 | 92.933096 | 297.5120998 | 515.683664
36 | 23.25274 | 149.9769 | 219.04102 | 93.01096 297.7477713 | 516.095035
37 | 23.270342 | 150.08429 | 219.19962 | 93.081368 | 297.962198 516.469487
38 | 23.28665 | 150.18357 | 219.34618 | 93.1466 298.160405 516.815555
39 | 23.30175 | 150.27523 | 219.48137 | 93.207 298.3433419 | 517.1348325
40 | 23.315565 | 150.35976 | 219.60671 | 93.26226 298.5123956 | 517.4306625
41 | 23.328338 | 150.43801 | 219.72216 | 93.313352 | 298.6685608 | 517.703198
42 | 23.340159 | 150.51056 | 219.82944 | 93.360636 | 298.8134798 | 517.956399
43 | 23.351115 | 150.57793 | 219.92912 | 93.40446 298.94808 518.191635
44 | 23.361284 | 150.64059 | 220.02188 | 93.445136 | 299.0732923 | 518.410514
45 | 23.370737 | 150.69895 | 220.10832 | 93.482948 | 299.189933 518.614457
46 | 23.379535 | 150.75339 | 220.18898 | 93.51814 299.2987488 | 518.80474
47 | 23.387734 | 150.80424 | 220.26437 | 93.550936 | 299.4004116 | 518.9825665
48 | 23.395385 | 150.85179 | 220.33491 | 93.58154 299.4954969 | 519.1489325
49 | 23.402533 | 150.89633 | 220.401 93.610132 | 299.584567 519.304783
50 | 23.409217 | 150.93808 | 220.46299 | 93.636868 | 299.6680761 | 519.4509445

Table B.7: Calculated Cg values for SLi [nD,5/2,4+5/2) ® |[nD,5/2,+5/2) pair-
states. Calculated parameters to calculate Cg values of %Li pair-states with full
angular dependence according to Eq. 2.19 and some angles . The values are in
natural units of Ej, a,°.
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Appendix C

Forster Resonances of 9Li.

We calculated the Forster defects d,5' for °Li |nP) Rydberg states using Pair-
Interaction [87]. Fig. C.1 shows these calculated defects for all relevant channels that
can be used to tune a Forster resonance. The main channel that can be used to tune
such resonances is the |(n+1)D) ® |(n F 1)D) pair state. This is because it has
strongest dipole matrix element couplings with target states |nP) ® [nP) and also is

least “sharp” which would lead to broader resonances.

1See Eq. 2.14.
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Figure C.1: Forster defects of °Li [nP)®|nP) Rydberg states. Relevant channels
that could be used to tune a Forster resonance with a field. The specific |7, m)
channels can be easily derived from the selection rules.
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Table C.1 shows all the magnetic fields less than 1000 G that would lead to
a Forster resonance for each possible principal quantum number. We can calculate
these values by matching the Forster defect d,5 and the magnetic field dispersion from
Eq. 3.1. With these results, it seems we could be able to tune reasonable resonances

using magnetic fields for states as low as [30P) ® |30P).

| nP state | B field (G) |

23P 708.5
30P 242.0 863.0
31P 191.9 526.6
32P 261.0
33P 49 516
34P 113.2
35P 2424
36P 343.0 361.9
37P 420.7
38P 479.9
39P 024.3
40P 256.7

Table C.1: Magnetic fields to tune Forster resonances in |nP,nP) states.
Predicted Forster resonances with magnetic field according to the known magnetic
dispersion of Eq. 3.1 and Forster defects shown in Fig. C.1. These predictions do not
have any information as to the width of these resonances.

C.1 (4 coefficients with Pair-Interaction

To test the predicted Forster resonances, we developed two different methods to
calculate Cg coefficients using Pair-Interaction. The first method involves comparing
the energy of the bare pair-state Ejg- j+(00) = 2FE)+ to the calculated energy of
the pair state at a large distance (e.g. 5 ayy is sufficient). By matching the energy
difference between these two and applying it to a simple van der Waals potential
V(R) = —Cs/R® we extract coefficients that we find agree very well to the full pair

potential at closer distances when accounting for overlap. While this method is very
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good at finding a good Cjy coefficient, pair-state calculations are very computationally
expensive. This makes the method too costly to do a full exploratory calculation.

Instead, we decided to calculate the C perturbatively as explained in Sec. 2.5.1.
This requires only single-particle calculations and is much faster due to its implemen-
tation in the Pair-Interaction package which very efficiently calculates dipole matrix
elements between Rydberg states. Similarly to the 0 field calculation of Sec. 2.5.1 for
the |j, m) basis. We can calculate full angular dependence of the Cy coefficients by
keeping track of |Am, + Amy| = 0,1,2% We perform calculations at many different
magnetic and electric fields. We find the exact same results shown in Fig. 2.4 for 0
field. Fig. C.2 shows these calculated Cy coefficients for an angle § = 7/2 for various
principal quantum numbers and fields. We find very good agreement with the pre-
dicted resonances from Table. C.1. It is important to note that in the case of |31P)
Rydberg states, we were dressing relatively close to a Forster resonance which could
also have impacted our ability to dress the atoms within the simple Rydberg dressing
scheme.

We should also note that tuning the Forster resonances with electric field is much
more complicated and asymmetric for different |k*) ® |k*) pair-states. This implies
that Rydberg dressing schemes at high magnetic fields can be much more straight-
forward to implement and tune. Furthermore, it is important to mention that im-
plementing the same calculations for different species is very easy within the Pair-

Interaction package.

2Even though m is not a “good” quantum number at high magnetic fields. The symmetry
considerations that allowed for these separations carry forward.
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Figure C.2: SLi Cg(7/2) coefficients vs. electromagnetic fields and principal
quantum number. Plots for the Cy coefficients of |k*) ® |k*) pair-states as a function
of magnetic (left column F = 0V /cm) and electric (right column B = 600 G) fields
and for |28P), |31P), and |41P) Rydberg states. This are for dipoles parallel to
eachother aligned perpendicularly to theis distance vector (§ = 7/2). The colors
correspond to the different possible pair-states as numbered in Fig. 3.1b and shown
in Fig. 3.2. Note how the Forster resonances with magnetic field agree with the
predicted values from Table. C.1.
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Appendix D

Measured |25) — |nP) Rydberg

Lines of °Li.

For the purpose of this thesis, we found a lot of the Rydberg lines of Lithium-6 for the
purpose of using these states for experiments. The methods used to find these lines
are explained in Sec. 3.5. Developing these techniques was necessary as these lines
were not exactly known before, The NIST Atomic Spectra Database in Ref. [105] only
lists approximate wavelengths up to the transition to [32P). However, it is simple
to calculate the expected wavelength transitions in terms of the ionization energy
(EE = 5.391714996(22) eV [105]) and the binding energy with quantum defects of
Eq. 2.1. We can calculate the energy difference between these convert to wavelength
(A = hc¢/AFE) and multiply by 4 to extract the pre-quadrupoled wavelength of our
laser system Acgp.

We reference the wavelength to the modes of the ULE cavity (Sec. 3.4.2) us-
ing a wavemeter (Burleigh WA-20VIS) and find the necessary sideband frequency
Av to drive the EOM and lock the laser from that line. We can extract Ajeqs =

Amode - /\2

s oaeAv/c, although these value does not have much real meaning since the

wavemeter we use is not that precise. However, the fact that measured and expected
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| 1| Aezp (nm) | Closest mode (nm) | Sideband (MHz) | Apeqs (nm) | Ay (nm) |

23 | 924.2510 924.2510 211 924.25040 | 231.06260
25 | 923.5671 923.5660 -651 923.56785 | 230.89196
26 | 923.2832 923.2870 349 923.28601 | 230.82150
28 | 923.8044 922.8040 -379 922.80508 | 230.70127
30 | 922.4186 922.4220 728 922.41994 | 230.60498
31 | 922.2533 922.2560 605 922.25428 | 230.56357
32 | 922.1033 922.1020 -425 922.10320 | 230.52580
33 | 921.9667 921.9670 -217 921.96761 | 230.49190
34 | 921.8421 921.8440 350 921.84301 | 230.46075
35 | 921.7281 921.7290 160 921.72855 | 230.43214
36 | 921.6235 921.6240 -345 921.62498 | 230.40624
37 | 921.5272 951.5300 680 951.52795 | 237.88199
38 | 921.4385 921.4410 955 921.43943 | 230.35986
39 | 921.3566 921.3550 -452 921.35628 | 230.33907
40 | 921.2807 921.2790 -611 921.28073 | 230.32018
44 | 921.0274 921.0300 603.5 921.02829 | 230.25707

Table D.1: Measured wavelengths of °Li |25) — |nP) transitions. Summary of
measured values for various Rydberg transitions. The method of finding these lines
is described in Sec. 3.5.

values are so close means that we can trust the calculated values to find any state as
long as we have access to a “ruler” such as the ULE cavity. Table. D.1 shows these
calculations along with Ayy = Aeas/4-

Using the “V-scheme” spectroscopy method we found lines up to |[40P), at which
point the spectroscopy signal as shown in Fig. 3.9c was too small to observe due
to the inverse scaling of dipole matrix element with principal quantum number (Ta-
ble. 2.1). As a proof of principle, we found the |44P) Rydberg line using only “MOT
spectroscopy” where we look at depletion of our magneto-optical trap as explained in
Sec. 3.5. It is important to mention that the values listed in Table. D.1 were taken
over the course of 4 years and we never observed a drift in their values larger than
~ 1 MHz in sideband frequency, even when referencing to the same Rydberg line years

apart.
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