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Abstract

Ultracold atomic gases in optical lattices are an ideal platform for studying quantum

many-body physics. The long timescales and isolated nature of these systems makes

them particularly suited for exploring the dynamics of nearly closed quantum systems

and their relaxation towards thermal equilibrium. In this thesis, we demonstrate the

realization of two novel cold atom systems: lattice Fermi gases with non-local inter-

actions and tilted Fermi-Hubbard systems. In both of these systems, we explore the

slow relaxation of density perturbations, either due to kinetic constraints or unusual

hydrodynamics.

The first system we study is a Fermi gas laser coupled to a Rydberg state. For

near resonant coupling of a localized gas in a unit-filled lattice, we realize a quantum

Ising model with transverse and longitudinal fields. We study the out-of-equilibrium

dynamics of antiferromagnetic correlations in this spin system. For far off-resonant

Rydberg coupling, we prepare itinerant Fermi gases with strong non-local interac-

tions. In this Rydberg-dressed regime, we introduce a small Rydberg admixture to

the ground state of the system which results in a laser-tunable soft-core interaction

potential. We use this technique to realize a t−V model with spin-polarized fermions

and study the dynamics of imprinted charge density waves. For strong off-site interac-

tions, the number of bonds is approximately conserved, which leads to slow relaxation

of these states. More generally, the Rydberg-dressing technique is promising for future

studies of extended Hubbard models in multi-component systems.

The second system we study is the two-dimensional Fermi-Hubbard model in the

presence of a large tilt. When the tilt is aligned with a lattice axis, the system exhibits

slow thermalization and subdiffusive charge transport due to modified hydrodynam-

ics where heat transport acts as a bottleneck for charge transport. This work sets

the stage for studying the complete breakdown of thermalization expected for more

generic tilt angles where Hilbert space fragmentation is expected.
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Chapter 1

Introduction

Technologies we depend on in a daily basis, such as high-temperature superconduc-

tors (HTSC) used in MRI machines, work through complicated quantum many-body

phenomena. Even though writing down the underlying equations for such systems

is relatively simple, as one increases the number of particles the problems quickly

become intractable for a classical computer. In the absence of a fully programmable

quantum computer, the only way to study these systems is using a quantum sim-

ulator. These machines act essentially as “analog” quantum computers where only

problems of a certain kind are accessible depending on the nature of the simulator.

The challenge comes in devising the right technologies to use in order to engineer the

desired quantum state to study.

Over the past few decades, ultracold atoms in optical lattices have become an

important approach for the study of strongly-correlated condensed matter systems

[1–3]. Their high tunability and long coherence times make them an ideal platform

for the quantum simulation of these kinds of problems. Particularly, the relatively

recent development of quantum gas microscopy has unlocked the ability to study

equilibrium and dynamical properties of lattice models with unprecedented detection

and control [4]. This development has granted the capability to precisely engineer

1



highly-entangled quantum many-body states of matter. The experiments described

in this thesis are conducted in a quantum gas microscope for fermions, one of a few

of such instruments around the world coming online in 2015. In our system, we load

ground-state atoms into a two-dimensional square optical lattice. These particles are

able to tunnel between lattice-sites and interact via contact-like van der Waals forces

with a range of only a few nanometers, much shorter than the lattice spacing. The

experiment natively realizes the Fermi-Hubbard model [5] which is widely believed

to exhibit the same physics as HTSC [6]. Through the author’s PhD, our group has

studied various aspects of both the repulsive and attractive phase-diagrams of this

model [7–11].

However, in order to study systems beyond the “plain vanilla” Fermi-Hubbard

model we have engineered novel platforms within our existing system [12–14]. These

new experimental platforms for quantum simulation are the basis for this thesis. We

achieve it in two ways.

Rydberg atoms

The first, and the main focus throughout the thesis, is the addition of a ultravi-

olet laser system for coupling the 6Li ground-state atoms to a Rydberg state [15].

This allows us to add a long-range interaction to the existing degenerate Fermi gas.

Through direct excitation, we have been able to realize a many-body spin system [16]

and studied its quench dynamics [12]. Furthermore, through off-resonant excitation

we have been able to realize the technique of Rydberg dressing [17–19]. Essentially,

we create a superposition state of mostly ground state atoms |g〉 with a small ad-

mixture of the Rydberg state |r〉 which interacts with other nearby “dressed” states

through a soft-core interaction potential. This allowed us to for the first time realize

an itinerant lattice model with strong non-local interactions [14].

2



Realizing strongly interacting degenerate quantum gases with long-range interac-

tions has been a long-sought goal in the field of quantum simulation. Many new plat-

forms are currently in development towards this goal including magnetic atoms [20–23]

and polar molecules [24, 25] in optical lattices. Unlike these, other platforms with

long-range interactions like ions [26, 27], Rydberg atoms [15, 16], polar molecules in

optical tweezers [28, 29] and atoms in optical cavities [30] consist of localized parti-

cles. On the other hand, itinerant quantum systems exhibit an interesting interplay

between interactions, kinetic energy, and quantum statistics.

The combination of motion and Rydberg dressing can lead to novel phenom-

ena and shed new light on the many-body physics of spinless and spinful fermionic

systems with power-law interactions. In 1D, Rydberg dressing leads to quantum liq-

uids beyond the Tomonaga-Luttinger liquid paradigm [31]. In 2D, topological Mott

insulators can be emulated by placing atoms in a Lieb lattice [32]. Compared to

contact or on-site interactions, the long-range interactions between Rydberg-dressed

atoms makes it easier to achieve the low filling factors required for quantum Hall

states [33, 34]. The interplay between hole motion and antiferromagnetism—believed

to be at the heart of HTSC—can be studied in Rydberg-dressed atomic lattices em-

ulating the t − Jz model [35]. In 3D, one can achieve exotic topological density

waves [36], topological superfluids [37], and metallic quantum solid phases [38].

Tilted systems

The second way is the addition of a strong external linear potential or “tilt” gen-

erated with a large off-centered optical dipole trap. This system has allowed us to

explore slow thermalization and heat diffusion in a strongly interacting system near

infinite temperature [13]. Here, the interactions allow for a charge density wave to

quickly equilibrate about infinite temperature generating a heat modulation across
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the system. The onset of the ensuing heat diffusion leads to a subdiffusive relaxation

of the correlated density profile.

The physics of generic clean, strongly tilted models can be understood through a

framework of Hilbert-space fragmentation (HSF) [39, 40]. For this class of systems,

the strong tilts generate an effective dipole moment conservation in the system, a

kinetic constraint. Like many-body localization (MBL) [41, 42] and quantum many-

body scars [43, 44], HSF is a mechanism whereby isolated quantum systems can fail

to reach thermal equilibrium after a quantum quench [45]. However, HSF differs

from MBL in that it can exhibit nonergodic dynamics without the need for disorder.

Such systems with a “clean” constraint have been theorized to be good candidates

to behave as “quantum memories” where highly-entangled many-body states can

be preserved [40, 46]. Our experiment explores a special case of a tilted Hubbard

system where Hilbert space fragmentation is not expected, but instead we observe

slow thermalization dynamics described by modified hydrodynamic equations.

The new class of models that can be experimentally realized using Rydberg

dressing unlocks the potential of studying the physics of HSF in an alternative set-

ting [47, 48]. In the limit of very strong off-site interactions, these systems develop

a kinetic constraint in the form of a conservation of “bonds” or “pairs” of atoms in

different sites stifling the dynamics of the system.

Outline

This thesis will mainly focus on the physics of Rydberg atoms and the considerations

needed to design and build a Rydberg dressing experiment. In the first part we will

present the theory and experimental background for our experiments. Ch. 2 will first

introduce a general theoretical background for Rydberg atoms and their properties.

Next, Ch. 3 will present both the theoretical and experimental background for the

successful implementation of Rydberg dressing for 6Li systems. This chapter will also

4



show a full characterization of the Rydberg dressing lifetime and properties. In the

second part we will present each of the pertinent publications related in the context

of this thesis. Ch. 4 presents initial experiments where direct excitation to a Rydberg

state was used to realize a 2D transverse Ising model. The following Ch. 5 shows the

results studying the heat transport and charge subdiffusion of strongly interacting

tilted Fermi-Hubbard models. Finally, Ch. 6 will display experiments where Rydberg

dressing allowed us to for the first time study the dynamics of itinerant systems with

strong non-local interactions.
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Chapter 2

Rydberg atoms for ultracold

systems

2.1 Introduction

Rydberg atoms are those excited in a high principal quantum number n state. This

means that the valence electron is in an orbital state very far away from the core

which makes the atom highly polarizable [49]. At long distances, Rydberg atoms

prepared in the same state interact via long-range1 van der Waals (VdW) potentials

of the form VV dW = −C6

R6 where C6 is a coefficient that can be numerically calculated

using second order perturbation theory.

Rydberg atoms have greatly exaggerated properties [49]. For example, they have

relatively long lifetimes in the order of tens of µs and interaction strengths in the order

of hundreds of MHz for typical inter-particle spacings (∼ 1µm). Particularly these

two characteristics, make resonantly coupled Rydberg atoms an ideal candidate plat-

form to simulate frozen systems with long-range interactions such as quantum Ising

1This qualifier will be used liberally throughout the thesis. In AMO, “long-range” interactions
have come to mean any sort of interaction that is not “contact-like” in nature. We are aware that
this term has a more rigorous definition in other fields and apologize for any possible confusion.
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models, as the interaction timescale is much larger than their lifetime. In fact, the use

of Rydberg atoms has ballooned over the past half-decade in a variety of experimental

platforms including optical tweezer arrays [43, 50–53], optical cavities [54–56], optical

lattices [12, 57], and many more [15, 58]. In addition, off-resonant coupling to these

Rydberg states can add a small admixture of these exaggerated properties to neutral

ground-state atoms and allow for the simulation of itinerant systems as described in

Ch. 3 and demonstrated in Ch. 6.

This chapter starts with a summary of the theory of Rydberg physics and the sort

of interaction potentials that can be tailored with resonant and off-resonant optical

coupling. There will be a specific emphasis on calculations for 6Li atoms, but the

ideas are more general and should be easily translated to any other atom or molecule.

As a disclaimer, there are other good references [59–62] that describe Rydberg atoms

and their interactions in the context ultracold atoms. This chapter will present the

topic as the author has come to understand it over the course of his PhD.

2.2 Scalings of Rydberg atom properties

In order to design an experiment that uses Rydberg atoms, it is important to un-

derstand how their properties scale with principal quantum number which can be

understood from quantum defect theory [63, 64]. In this framework, the binding

energy or the outer electron can be written down similarly to Hydrogen as:

En∗ = −R
∗

n∗2
= − 1

1− me
mcore

R∞
n∗2

(2.1)

Where R∞ = 3289.841 960 250 8(64) THz [65] is the Rydberg constant, me is the

electron mass, mcore the mass of the ionic core. For 6Li, R∗ = 3289.541 926(2) THz [64]

will end up being a small correction of ∼ 0.01% on the bare Rydberg constant R∞ due
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Property Variable Scaling ∝ n∗
α

Binding Energy En∗ -2

Energy difference from nearby states |En∗ − En∗±1| -3

Coupling to ground-state |µ2S,nP | -3/2

Coupling to nearby states
∣∣µ(n±1)S,nP

∣∣ , ∣∣µ(n±1)D,nP

∣∣ 2

Orbital Radius 〈r̂〉 2

Rabi Frequency Ω -3/2

Radiative Lifetime τ0 3

Blackbody Decay Lifetime τBB 2

Van der Waals coefficient C6 11

Table 2.1: Scaling of Rydberg atom properties. Scalings of useful Rydberg atom
properties with principal quantum number to take into account when designing an
experiment [49].

to the large core-to-electron mass ratio2. Furthermore, n∗ = n − δnlj is the effective

principal quantum number with some “defects” that can only be spectroscopically

measured (see [64] for Lithium). In general, these defects vanish for large angular

momenta which in turn start following the original Hydrogen scaling (∝ 1/n2).

A summary of important scalings of Rydberg atom properties with the corrected

principal quantum number is shown in Table 2.1. One can derive the more useful

ones from the scaling of the dipole matrix elements (Sec. 2.3) and the binding energy

(Eqn. 2.1). For experiments with neutral atoms coupled through an optical transition,

the Rabi frequency Ω at a fixed optical power goes as the coupling of the ground-

state atoms with the Rydberg state which vanishes at a rate of ∝ n∗
−3/2. Another

very important property is the lifetime of the atoms which has two main components

as explained in (Sec. 2.4). The radiative lifetime is dominated by the spontaneous

decay to the ground-state (Fig. 2.2b-c) and as such goes as the inverse square of such

coupling (∝ n∗
3) while the black-body lifetime has a more complicated relation as

2Since it is a small correction, for some of the coming explanations it will be assumed to be a
negligible difference.
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it is dominated by stimulated absorption/emission of a black-body photon and can

be shown to increase quadratically (∝ n∗
2) [66]. Therefore the scaling of the full

effective lifetime will depend on which component it is being dominated by as shown

in Fig. 2.2a. Finally, the C6 coefficient goes as the coupling to nearby states to the

fourth power divided by the energy separation to those states resulting in a very

strong scaling of ∝ n∗
11 (Eqn. 2.18). Careful consideration of the scalings of all these

parameters and how they modify the tailored interaction potentials is necessary to

design a successful experiment.

2.3 Transition Dipole Matrix Elements

Since the scalings of Rydberg properties depend mainly in the coupling of different

states through a photon, it is useful to describe the matrix elements of the dipole

operator µ̂ = er̂ which are also referred to as the dipole matrix elements (DME). We

can write the full dipole matrix element between two states in the |n, l, j,m〉 basis3

as:

µa,b = 〈b| µ̂ |a〉 = 〈nb, lb, jb,mb| µ̂ |na, la, ja,ma〉 = Rna,la,ja
nb,lb,jb

Ala,ja,malb,jb,mb
(2.2)

In this formula, Rna,la,jb
nb,lb,jb

represents the radial component of the DME (Eq. 2.9)

and Ala,ja,malb,jb,mb
represents the angular component of the DME (Eq. 2.11). We are able

to do this, because the full wavefunction is separable in two terms:

|n, l, j,m〉 = |Ψnljm(r)〉 = |ψnlj(r)〉 ⊗ |χljm(θ, φ)〉 (2.3)

3Here we have chosen to work in the |n, l, j,m〉 fine structure basis which is most useful at zero
field. However, the equations shown can be used for other basis as well, one would just need to keep
track of the important angular momenta or use the Clebsch-Gordan coefficients (Table. 3.1).
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Where all radial dependence goes in the first term and the second term only has an-

gular components to it. In the following, we will explain how to numerically calculate

each of the DME components and their implications.

2.3.1 Radial component of the dipole matrix element

In order to calculate the radial component of the DME, we need two main ingredients.

First, we need to be able to write down the potential for said electron in a highly-

excited Rydberg state, which we will be able to do using a model potential [67].

Second, we will need to write down Schödinger’s equation in a way that can be

numerically solved using Numerov’s algorithm [68].

Alkali-metal Rydberg atom model potential

For Alkali-metal Rydberg atoms, it is possible to think of the valence electron poten-

tial as a perturbation of the typical Hydrogen −1/r potential. Essentially, the nucleus

and inner bound electrons will constitute a polarizable core with total charge +e and

the valence electron will orbit at some far away distance. This model potential has

the form [67]:

V (r) = −Zl
r
− αc

2r4

(
1− e−(r/rc)

6
)

(2.4)

where Zl = 1 + (Z − 1) e−a1r − re−a2r (a3 + a4r)

Here, αc = 0.1923 is Lithium’s core polarizability, Z is the atomic mass, and the

parameters ai, rc are the ones described in Table. 2.2.

Numerically solving the Schrödinger equation

Using the model potential (Eq. 2.4), the binding energy (Eq. 2.1), and substituting

in the separable wavefunction (Eq. 2.3) we can write down the Schödinger equation
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Parameter l = 0 l = 1 l ≥ 2

a1 2.47718079 3.45414648 2.51909839

a2 1.84150932 2.55151080 2.43712450

a3 -0.02169712 -0.21646561 0.32505524

a4 -0.11988361 -0.06990078 0.10602430

rc 0.61340824 0.61566441 2.34126273

Table 2.2: Lithium model potential parameters. Parameters for the model
potential shown in Eq. 2.4. The parameters are taken from [67].

.

in atomic units4 as:

(
−1

2
∇2 + V (r)

)
Ψnljm(r) = En∗Ψnljm(r) (2.5)(

−1

2

(
∂2

∂r2
+

2

r

∂

∂r

)
+
l(l + 1)

2r2
+ V (r)

)
ψnlj(r) = − 1

2n∗2
ψnlj(r) (2.6)

Here, we have used the fact that χlmj(θ, φ) is a spherical harmonic providing an extra

energy term proportional to the angular momentum l. The final step in this derivation

is to substitute the radial wavefunction with a modified function Unlj(r) = rψnlj(r).

This transformation is useful for two reasons. For one, in spherical coordinates it is

straightforward to normalize as
∫∞

0
|ψnlj(r)|2 r2dr =

∫∞
0
|Unlj(r)|2 dr = 1. But also, it

is easy to show that ∂2

∂r2
Unlj(r) = r

(
∂2

∂r2
+ 2

r
∂
∂r

)
ψnlj(r) which allows us to reduce the

Schrödinger equation to:

(
−1

2

∂2

∂r2
+
l(l + 1)

2r2
+ V (r)

)
Unlj(r) = − 1

2n∗2
Unlj(r) (2.7)(

∂2

∂r2
− l(l + 1)

r2
− 2

(
V (r) +

1

2n∗2

))
Unlj(r) = 0 (2.8)

4The model potential from [67] is written down in these units so it was used for convenience. It
is important to note that in these units, the energy scale is the Hartree EH = 2R∞ which has an
important extra factor of 2 on the usual Rydberg constant.

11



-0.07

 0

 0.07

 0  50  100

(a) (b)

R
ad

ia
l W

av
ef

un
ct

io
n 

(a
rb

.)

Radius (nm)

-0.07

 0

 0.07

 0  50  100
 0

 0.002

 0.004

 0  50  100

(a) (b)

P
ro

ba
bi

lit
y 

D
is

tr
ib

ut
io

n 
(a

rb
.)

Radius (nm)

 0

 0.002

 0.004

 0  50  100

Figure 2.1: Rydberg atom radial wavefunctions. Radial Wavefunctions (a) and
probability distributions (b) for the 6Li 23P1/2 (green) and 28P1/2 (orange) which
are the states used for pertinent simulations in this thesis. These were calculated
using a model potential [67] and Numerov’s algorithm [68]. Dotted lines correspond
to the average orbital radius of the distribution 〈r̂〉 = 〈Ψn,l,j,m(r)| r̂ |Ψn,l,j,m(r)〉 =
〈ψn,l,j(r)| r̂ |ψn,l,j(r)〉.

Which is a second order differential equation that can be numerically solved using

Numerov’s algorithm [68] as explained in App. A. Fig. 2.1 shows the numerically

solved modified radial wavefunctions Unlj(r) for 6Li Rydberg states 23P1/2 and 28P1/2
5

which are important for experiments pertinent to this thesis.

Radial DME

Finally the radial component of the dipole matrix element can be calculated by nu-

merically integrating the coupling between two wavefunctions by the orbital radius

operator:

Rna,la,ja
nb,lb,jb

= 〈ψnblbjb(r)| r̂ |ψnalaja(r)〉 =

∫ ∞
0

ψ∗nblbjb(r)rψnalaja(r)r
2dr

=

∫ ∞
0

U∗nblbjb(r)rUnalaja(r)dr (2.9)

In the case of a = b this is exactly the expectation of the orbital radius 〈r̂〉.
5The effect of j on these is very small as it only slightly modifies the quantum defect δnlj [64].
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2.3.2 Angular component of the dipole matrix element

In order to calculate Ala,ja,malb,jb,mb
, it will be useful to rewrite the dipole moment operator

in terms of the possible polarization vectors of the coupling photon:

µ̂ = er̂ = er̂
(
Y −1

1 (θ̂, φ̂)e−1 + Y 0
1 (θ̂, φ̂)e0 + Y +1

1 (θ̂, φ̂)e+1
)

(2.10)

Where Y −ml are the spherical harmonics and {e−1, e0, e+1} correspond to {σ−, π, σ+}

transitions respectively. This essentially shows the effect that a photon can have

on the momentum of a quantum state dependent on its polarization. Here, the

component of r̂ will only affect the radial component ψnlj(r) of the wavefunction as

explained in the previous subsection. Calculating the full angular component of the

DME will follow from the recursive application of the Wigner-Eckhart theorem [69]

and using the identity
∫
Y m1
l1
Y m2
l2
Y m3
l3

dΩ =
√

(2l1+1)(2l2+1)(2l3+1)
4π

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)
.

A full derivation of this can be found in [70]. The final form of this angular component

can be shown to reduce to:

Ala,ja,malb,jb,mb
=(−1)jb+ja+s+1−mb

√
(2la + 1)(2lb + 1)(2ja + 1)(2jα + 1)

×

 lb 1 la

ja s jb


∑
q

 jb 1 ja

−mb q ma

 (2.11)

Here, the matrix between parenthesis () is a Wigner-3j symbol and the matrix between

{} is the Wigner-6j symbol. The number q = {−1, 0, 1} corresponds to the type of

transition {σ−, π, σ+} respectively. Only one of the terms in the Wigner 3j symbol

sum will be nonzero corresponding to the correct change of m in the transition allowed

by the selection rules as shown in Table. 2.6.

13



 0

 100

 200

 300

 10  20  30  40  50

(a) (b) (c)

Li
fe

tim
e 

(u
s)

Quantum Number n

τ0
τBB
τ

 0

 100

 200

 300

 10  20  30  40  50
 0

 5

 10

 0  10  20  30  40

(a) (b) (c)

T
ra

ns
iti

on
 R

at
e 

(m
s-
1 )

Quantum Number n

23P

Spontaneous
BB T=300K

BB T=77K

 0

 5

 10

 0  10  20  30  40
 0

 2

 4

 6

 0  10  20  30  40

(a) (b) (c)

T
ra

ns
iti

on
 R

at
e 

(m
s-
1 )

Quantum Number n

28P

 0

 2

 4

 6

 0  10  20  30  40

Figure 2.2: Lifetime of 6Li Rydberg atoms. (a) Spontaneous (τ0 green) and
black-body (τBB orange) components of the full Rydberg atom lifetime (τ purple) as
a function of principal quantum number n. (b-c) Transition rate of decay channels
binned by principal quantum number n and divided in spontaneous decay (red) and
black-body stimulated transitions (blue for T = 300 K and green for T = 77 K. (b)
Rydberg state used in Ch. 4. (c) Rydberg state used in Ch. 6. Data was calculated
using the ARC python package [76].

2.4 Lifetime of Rydberg atoms

Probably only second to the long-range interaction, the lifetime of Rydberg atoms is

their most important property. Certainly it is the one that caused most headaches

for our experiments and which we spent most of our time characterizing and un-

derstanding (Sec. 3.7). The lifetime of Rydberg atoms has two main components:

spontaneous emission down to the ground-state and black-body stimulated decay to

nearby Rydberg states. The second one of these is most problematic and has limited

many experimental realizations of Rydberg platforms [71–75] through non-trivial de-

cay mechanisms. Fig. 2.2 shows the couplings of pertinent Rydberg states for this

thesis divided by both components of the lifetime. It also shows the potentially strong

effect that temperature can have on the problematic decay channels.

It is possible to calculate independently both components of the lifetime mak-

ing use of dipole matrix elements. In the case of spontaneous emission it is well
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Parameter l = 0 l = 1 l ≥ 2

τs 0.8431 2.8807 0.4781

δ 2.9936 2.9861 2.9963

A 0.051 0.040 0.058

B 0.097 0.078 0.148

C 1.991 1.712 1.934

D 3.852 3.610 3.783

Table 2.3: Lithium Rydberg lifetime parameters. Parameters for the Rydberg
lifetime shown in Eq. 2.13. The parameters and equation are taken from [66].

approximated by Fermi’s golden rule:

1

τ0

≈ ΓnP→2S =
8π2e2

3ε0~λ3
0

|µnP,2S|2 (2.12)

From this expression, it should be obvious that the scaling of the radiative lifetime will

be cubic (τ0 ∝ n∗
3) since we know that the dipole matrix element to the ground-state

scales as µnP,2S ∝ n∗
−3/2 (Table. 2.1).

For the case of the black-body induced decay, it is also possible to write down

a similar equation were we take into account the distribution of radiation B(λ, T )

according to Planck’s law. However, there exist parametric approximations for the

full lifetime of Alkali-metal Rydberg atoms [66]. The form of this equation is:

τ =

 1

τsn∗δ
+

A

n∗D
21.4

exp
(

315780 B
n∗CT

)
− 1

−1

(2.13)

Here {τs, δ, A,B,C,D} are the parameters described in Table. 2.3, T is in units of

[K] and τ in units of [ns]. The first term corresponds to the spontaneous emission

and has roughly the expected scaling. The second term is more complicated but in

the large n limit can be shown to roughly have a ∝ n∗2 scaling.
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The full scaling of τ with principal quantum number is a bit complicated as for low

n it is dominated by spontaneous emission τ0 but at higher n (and room temperature)

it is dominated by the black-body enabled decay channels (τBB). We chose to work

with relatively low n in order to not be dominated by τBB and avoid non-trivial

many-body decay mechanisms. In fact, the states we ended up working with (23P

and 28P ) are right around where both components of the lifetime are roughly equal

at room temperature (Fig. 2.2a).

In our experiment, directly measuring τ is not quite feasible because the Ryd-

berg states have opposite polarizabilities to the ground-state. This means that the

position where the ground-state atoms are trapped in our optical lattice, the Ryd-

berg atoms are anti-trapped leading to strong heating. This was not a big issue for

the experiments explored in Ch. 4 as the timescales of the interaction timescales were

much faster. We can however indirectly measure τ using the Rydberg dressing scheme

which will be explored in Sec. 3.7. In general, we assumed the values from Eq. 2.13

for which we later found relatively good agreement experimentally.

2.5 Interactions between electric dipoles

As stated in the introduction, the large electron orbit radius of Rydberg atoms gen-

erates an effective dipole moment (µ). When you get two Rydberg atoms close to

each other, they can interact via the exchange of virtual photons. If the quantum

states of the two neighboring atoms (e.g. |a〉 and |b〉) have different quantum numbers

such that they can exchange a single-photon (〈a| µ̂ |b〉 6= 0), then they can interact

via what are called dipole-dipole interactions (Vd−d = C3/R
3) [77]. However, if the

states cannot exchange a single photon (〈a| µ̂ |b〉 = 0), such as states with the same

angular momentum l, then they can only interact via a second-order process in what
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are called van der Waals forces (VV dW = C6/R
6) [53]. Fig. 2.3a shows a Feynman

diagram of this two-photon interaction.

We will focus on the van der Waals interaction as it is most pertinent to the

experiments performed as part of this thesis. However it is also possible to take

advantage of the dipole-dipole interactions by using microwaves to excite multiple

Rydberg states at a time [78–81].

2.5.1 Calculating C6 coefficients with angular dependence

A numerical calculation of the interaction potential is possible using second order

perturbation theory. Multiple theses already contain rigorous calculations [59, 60, 62].

In this subsection, we will present a method to easily calculate C6 coefficients with

full angular dependence.

The van der Waals interaction potential between two atoms |a〉 and |b〉 can be

calculated through the formula:

C6

R6
=
∑

α,β 6=a,b

∣∣∣〈αβ| V̂ (R) |ab〉
∣∣∣2

δαβ
(2.14)

Here, V̂ (R) represents the two-particle Hamiltonian coupling from pair-state |a〉⊗

|b〉 to |α〉⊗ |β〉 (Fig. 2.3a). δαβ = Eα +Eβ −Ea−Eb is the energy difference between

the intermediate pair-states and the interacting pair-state6.

Classically, if we have two atoms with parallel dipole moments (aligned to a mag-

netic field for example) µa and µb a distance R apart at an angle θ (Fig. 2.3b), The

potential V (R) can be written as:

V (R) =
µa · µb

R3
− 3(µa ·R)(µb ·R)

R5
(2.15)

6This is also sometimes referred to as the Förster defect as explained in App. C.

17



R

θ

μ1

μ2

(a) (b)

a

α

a

b

β

b

Figure 2.3: Van der Waals interactions between Rydberg atoms (a) Feynman
diagram of the VdW second order process. (b) Schematic of two Rydberg atoms with
parallel dipole moments.

We can further reduce this expression using the full angular form of the dipole

moment (Eq. 2.10) and removing the spherical coordinate φ due to the symmetry of

having the dipoles be parallel7 (Fig. 2.3b). Here we will use the notation {µ̂i+, µ̂i0, µ̂i−}

for {σ−, π, σ+} transitions of the atom i which define the change ∆m by the photon

polarization. The following expressions represents the full dipole matrix element with

angular dependence between a pair parallel dipoles:

V̂ (R, θ) =
1

R3
[(µ̂a−µ̂b+ + µ̂a+µ̂b− + (1− 3 cos2 θ)µ̂a0µ̂b0)

− 3√
2

sin θ cos θ(µ̂a0µ̂b+ + µ̂a0µ̂b− + µ̂a+µ̂b0 + µ̂a−µ̂b0)

− 3

2
sin2 θ(µ̂a+µ̂b+ + µ̂a+µ̂b− + µ̂a−µ̂b+ + µ̂a−µ̂b−)] (2.16)

V̂ (R, θ) =
1

R3
[− (1− 3 cos2 θ)(

1

2
µ̂a−µ̂b+ +

1

2
µ̂a+µ̂b− − µ̂a0µ̂b0)

− 3√
2

sin θ cos θ(µ̂a0µ̂b+ + µ̂a0µ̂b− + µ̂a+µ̂b0 + µ̂a−µ̂b0)

− 3

2
sin2 θ(µ̂a+µ̂b+ + µ̂a−µ̂b−)] (2.17)

7By an external magnetic field for example.
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Since the Van der Waals interaction is a virtual two-photon process where the

atoms return to their initial states, the possible full transitions defining the C6 coef-

ficient have only three kinds of terms with explicit angular dependence:

1. c1 with dependence (1 − 3 cos2 θ)2 for |∆ma + ∆mb| = 0 transitions8. This

term corresponds to transitions where the net angular momentum is conserved.

This means that only for transitions where one atom increases while the other

decreases in its m value or when both maintain the same m. Note that for the

transitions with a change in m there is an extra factor of 1
4
.

2. c2 with dependence −9
2

sin2 θ cos2 θ for |∆ma + ∆mb| = 1 transitions. This term

corresponds to only one atom changing m value while the other one remains

invariant. The minus sign comes from the asymmetry of this transition due to

the opposite polarizations needed to return only one atom back to its original

state.

3. c3 with dependence 9
4

sin4 θ for |∆ma + ∆mb| = 2 transitions. This term corre-

sponds to both atoms increasing or decreasing its m value by 1.

With all these formulas, we can now calculate the C6 coefficient between two states

|a〉 and |b〉 by adding all the terms corresponding to all possible intermediate states

|α〉 and |β〉 to c1, c2, or c3 depending on which category they fit in. The terms are

calculated in terms of the dipole matrix elements and the state energies through the

formula:

c =
∑

α,β 6=a,b

|〈α| µ̂ |a〉|2 |〈β| µ̂ |b〉|2

Eα + Eβ − Ea − Eb
(2.18)

Even though forbidden transitions will already have an angular component of

the DME equal to 0 due to the Wigner 3j and 6j functions (Sec. 2.3.2), it is very

8∆ma = ma −mα and ∆mb = mb −mβ
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important to take into account the selection rules (Table. 2.6) when summing over

all possible intermediate states α and β. This will greatly reduce calculation time.

It is also important to mention that it only makes sense to calculate C6 coefficientes

between two atoms with states that cannot be directly coupled (〈b| µ̂ |a〉 = 0) in order

to satisfy the perturbation theory expansion. Otherwise, there would be a resonant

channel where the atoms exchange quantum states (dipole-dipole interactions).

2.5.2 C6 values for nP pair-states of Lithium

A calculation for the C6 coefficients of all possible nP pair-states was carried for

values of n = {20, 100}. Only the values for positive m values was calculated as it

was found that it was invariant under a sign change of m but not in its absolute value.

We calculated all the c1, c2, c3 values (App. B) so we can extract the C6 coefficient

with angular dependence as:

C6(θ) = c1 · (1− 3 cos2 θ)2 + c2 · 9

2
sin2 θ cos2 θ + c3 · 9

4
sin4 θ (2.19)

Fig. 2.4 shows the calculated value of C6/n
11
∗ at zero magnetic field. As expected,

the values are mostly constant when taking into account the C6 ∝ n11
∗ scaling. We

can also note the Förster resonance around n = 32, 33 which will be further explored

in Sec. 3.2.2. All interactions for P states of 6Li are attractive.

2.6 Two 2-level Rydberg atom model

The interaction potentials of Rydberg atoms coupled in a light-field are usually sim-

plified to be only two-particle in nature. Higher order corrections of the potentials are

possible to calculate as shown in Ref. [60]. As long as these higher order processes are

not resonant, they are mostly negligible, allowing us to treat the interaction potential

as purely two-particle in nature.
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Figure 2.4: Calculated C6 coefficients for the P states of 6Li Van der
Waals interaction coefficients between |nP, 1/2, 1/2〉 (red), |nP, 3/2, 1/2〉 (blue), and
|nP, 3/2, 3/2〉 (green) Rydberg states. A Förster resonance can be appreciated around
n = 32, 33. The C6 coefficient is in atomic units [2R∞a

6
0].

In this limit, we can first write down a toy model of two 2-level atoms a distance

R apart as shown in Fig. 2.5a. In the Born-Oppenheimer approximation we can

write down the individual Hamiltonians for each particle in the {|g〉 (ground), |r〉

(Rydberg)} basis as:

Ĥ1 = Ĥ2 = Ĥsingle =
Ω

2
(|r〉 〈g|+ |g〉 〈r|)−∆ |r〉 〈r| =

 0 Ω/2

Ω/2 −∆

 (2.20)

Where Ω is the Rabi coupling of the light field and ∆ is its detuning from resonance.

With this single-particle Hamiltonian in mind, we can write down the full two-

particle Hamiltonian (Fig. 2.5b) as:

Ĥ(R) = Ĥsingle ⊗ Î + Î⊗ Ĥsingle + V (R)(|r〉 〈r| ⊗ |r〉 〈r|) (2.21)

Ĥ(R) =



0 Ω/2 Ω/2 0

Ω/2 −∆ 0 Ω/2

Ω/2 0 −∆ Ω/2

0 Ω/2 Ω/2 −2∆ + V (R)


(2.22)
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Figure 2.5: Two 2-level Rydberg atom model. (a) Two 2-level Rydberg atoms
coupled in the same light-field with strength Ω and detuning ∆ interact with each
other at a distance. (b) Two-particle energy level scheme for the diagram in (a)
showing the full Hamiltonian within the Born-Oppenheimer approximation.

Where V (R) = −C6

R6 is the van der Waals potential between two nearby Rydberg

atoms.

2.7 Resonant coupling

In the case of resonant coupling, experimentally we can realize a transverse Ising

model (Ch. 4). In order to obtain Eq. 4.1 one simply needs to take into account

Eqs. 2.20 and 2.21 with the identities for the Pauli matrices:

σ̂x = |r〉 〈g|+ |g〉 〈r| and σ̂z = Î− |r〉 〈r| (2.23)

This will realize a transverse Ising Hamiltonian where the Rabi coupling Ω is a

transverse field σ̂x, the detuning ∆ will be a parallel field σ̂z field, and the interaction

potential will be a σ̂zσ̂z term coupling the spins. In Ch. 4 we describe an experiment

where we study the quench dynamics of this Hamiltonian and attempt to prepare an

antiferromagnetic phase quenching through a quantum phase transition at different

rates.
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2.7.1 Rydberg Blockade Radius

The only final consideration for resonant coupling is the effect of the so-called Rydberg

Blockade [82–86]. Essentially, the van der Waals interactions between Rydberg atoms

can be quite strong compared to the Rabi coupling of the ground-state to the Rydberg

state. If one atom is in a Rydberg state, the excitation of neighboring atom to a

Rydberg state is strongly suppressed within a blockade radius9 Rb =
∣∣C6

Ω

∣∣1/6. Thus, it

is important to choose the right n Rydberg state such that the relationship between

the inter-particle spacing (lattice spacing alatt in our case) and Rb is suitable for the

intended quantum simulation.

2.8 Off-resonant coupling: Rydberg dressing

The idea of off-resonantly coupling neutral ground-state atoms to a Rydberg state

was first proposed a decade ago [17, 18]. This technique is referred to as Rydberg

dressing. The general idea is that by off-resonantly coupling the ground-state atoms

via a laser with Rabi frequency Ω and detuning ∆ from resonance you can add a

small admixture β = Ω
2∆
� 1 of the Rydberg state. This has the effect of adding the

interesting properties of Rydberg atoms to ground-state atoms. In this section we

will explain the basics of this technique and how to derive it.

2.8.1 “Dressed” ground-state

In order to understand the idea of a “dressed” ground-state and its properties we need

only take into account first order perturbation theory of the single-particle Hamilto-

nian Ĥsingle
10 shown in Eq. 2.20 for the limit Ω� ∆. In this formalism we can write

9This comes from equating the van der Waals potential to the Rabi coupling in the Ω� ∆ limit.
For atoms a distance less than Rb away, the |rr〉 state is so far detuned due to interactions that a
second atom cannot be also excited to the Rydberg state.

10We can divide this Hamiltonian in perturbed and unperturbed components due to the Rabi
coupling: Ĥsingle = Ĥ∆ + ĤΩ.
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down the dressed ground-states as:

|g̃〉 ≈ |g〉+
〈r| ĤΩ |g〉
Eg − Er

|r〉 = |g〉+
Ω/2

∆
|r〉 = |g〉+ β |r〉 (2.24)

Here, ĤΩ accounts for the perturbation component of the full Hamiltonian and Ei

are the energies of the unperturbed component corresponding to the diagonal terms.

This dressed ground-state will inherit the properties of the Rydberg atoms.

In particular the lifetime of the dressed atoms will now be τdr = β−2τ due to the

probability of the dressed atom to be in the Rydberg state |r〉. This enhancement

over the bare Rydberg lifetime can be quite sizable depending on the chosen dressing

parameters Ω and ∆ extending the lifetime from the order of tens of µs to the order of

ms which is of the order of typical kinetic timescales in ultracold atom experiments.

2.8.2 “Dressed” interaction potential

The dressed atoms will also inherit a long-range interaction potential in the form

of a distance-dependent light shift due to the light-field. This is somewhat similar

to the Rydberg-Blockade effect discussed in Sec. 2.7.1. In order to understand its

properties, we will need to apply again perturbation theory but to the two-particle

Hamiltonian of Eq. 2.22. First, it is easy to show that up to second-order perturbation

in the R →∞ limit, the two-particle ground-state is the same as expected from the

single-particle dressed ground-state:

|g̃g̃〉 = |g̃〉 ⊗ |g̃〉 =
1

1 + β2
(|g〉+ β |r〉)⊗ (|g〉+ β |r〉) (2.25)

|g̃g̃〉 = (1− β2) |gg〉+ β(|rg〉+ |gr〉) + β2 |rr〉+O[β3] (2.26)

Where the term (1+β2)−1 comes from normalizing Eq. 2.24. The interaction potential

will arrive from finding the distance dependent eigenenergy of the two-particle dressed
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ground-states Eg̃g̃(R). To find this we need to add corrections up to fourth order in

perturbation of the ĤΩ component. It is easy to show from geometric reasons that the

first and third order corrections will vanish as there is no path connecting back to the

ground-state (Fig. 2.6a). Therefore, to figure out the second-order correction we have

to realize that there are only two possible paths back to |gg〉 going back-and-forth to

|gr〉 or |rg〉:

E(2)
gg =

∣∣∣〈gg| ĤΩ |gr〉
∣∣∣2

E
(0)
gg − E(0)

gr

+

∣∣∣〈gg| ĤΩ |rg〉
∣∣∣2

E
(0)
gg − E(0)

rg

= 2
(Ω/2)2

∆
=

Ω2

2∆
(2.27)

Here E
(0)
i correspond to the diagonal terms of Eq. 2.22. In the case of the fourth-order

correction to the energy, we will need to take into account 8 distinct paths as shown

in Fig. 2.6a:

E(4)
gg =−

∣∣∣〈gg| ĤΩ |gr〉
∣∣∣4(

E
(0)
gg − E(0)

gr

)3 −

∣∣∣〈gg| ĤΩ |rg〉
∣∣∣4(

E
(0)
gg − E(0)

rg

)3

−

∣∣∣〈gg| ĤΩ |gr〉
∣∣∣2 ∣∣∣〈gg| ĤΩ |rg〉

∣∣∣2(
E

(0)
gg − E(0)

gr

)2 (
E

(0)
gg − E(0)

rg

) −
∣∣∣〈gg| ĤΩ |rg〉

∣∣∣2 ∣∣∣〈gg| ĤΩ |gr〉
∣∣∣2(

E
(0)
gg − E(0)

rg

)2 (
E

(0)
gg − E(0)

gr

)
+

∣∣∣〈gg| ĤΩ |gr〉 〈gr| ĤΩ |rr〉
∣∣∣2(

E
(0)
gg − E(0)

gr

)2 (
E

(0)
gg − E(0)

rr

) +

∣∣∣〈gg| ĤΩ |rg〉 〈rg| ĤΩ |rr〉
∣∣∣2(

E
(0)
gg − E(0)

rg

)2 (
E

(0)
gg − E(0)

rr

)
+
〈gg| ĤΩ |gr〉 〈gr| ĤΩ |rr〉 〈rr| ĤΩ |rg〉 〈rg| ĤΩ |gg〉(

E
(0)
gg − E(0)

gr

)(
E

(0)
gg − E(0)

rr

)(
E

(0)
gg − E(0)

rg

)
+
〈gg| ĤΩ |rg〉 〈rg| ĤΩ |rr〉 〈rr| ĤΩ |gr〉 〈gr| ĤΩ |gg〉(

E
(0)
gg − E(0)

rg

)(
E

(0)
gg − E(0)

rr

)(
E

(0)
gg − E(0)

gr

) (2.28)

E(4)
gg =− 4

(Ω/2)4

∆3
+ 4

(Ω/2)4

∆2 (2∆− V (R))
=

Ω4

4∆2 (2∆− V (R))
− Ω4

4∆3
(2.29)
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Adding Eqs. 2.27 and 2.29 we can get the full eigenenergy of the dressed ground-state

as:

Eg̃g̃(R) = E(2)
gg + E(4)

gg +O[Ω6] =
Ω2

2∆

(
1 +

Ω2

2∆

(
1

2∆− V (R)
− 1

∆

))
(2.30)

From this equation, it is easy to show that in the R →∞ (V (∞) → 0) limit we get

Eg̃g̃(∞) = 2δAC(∆,Ω). Where δAC is the single-particle light-shift:

δAC(∆,Ω) = −∆

2
+

1

2

√
Ω2 + ∆2 =

Ω2

4∆

(
1− Ω2

4∆

)
+O[Ω6] (2.31)

Finally, with all of these calculations in mind we can solve for the Rydberg dressed

interaction potential:

Udr(R) =Eg̃g̃(R)− 2δAC =
Ω4

8∆3

(
1

2∆
V (R)
− 1

)
=

Ω4

8∆3

(
1

−2∆R6

C6
− 1

)

Udr(R) =− U0

1 + (R/Rc)
6 (2.32)

Here we have made some assumptions that are particular to Lithium. As explained

in Sec. 2.5.2, for Lithium-6 P states all van der Waals potentials are attractive which

is why we define V (R) = −C6

R6 to keep C6 > 0. In general, this derivation would

not work if the detuning ∆ is such that the |rr〉 potential becomes resonant at any

distance as the Born-Oppenheimer approximation would break down (Fig. 2.5b).

For the simple Rydberg dressing scheme described here, one can only produce an

interaction potential of the same sign as the van der Waals potential. So if the chosen

Rydberg state is attractively interacting so will be the dressed ground-state atoms

and vice-versa.
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Figure 2.6: Rydberg “dressed” interaction potential. (a) Diagram of the two-
particle states, blue lines denote the connections between them through the exchange
of a photon (ĤΩ), red lines denote the 8 possible paths for fourth-order pertur-
bation theory. (b) Eigenenergies of the Hamiltonian in Eq. 2.22 for parameters
C6 = 100 MHzµm6, ∆ = 100 MHz, and Ω = 10 MHz; each color corresponds to
a different eigenvalue. (c) Same as (a) but zoomed-in on the dressed ground-state
eigenenergy Eg̃g̃(R) (Eq. 2.30). Here we can appreciate the soft-core dressed inter-
action potential from Eq. 2.32. The top dotted gray line notes the light shift of the
atoms δAC (Eq. 2.31) and the bottom one guides the eye for the potential depth U0.

The potential described by Eq. 2.32 and shown in Fig. 2.6c is a soft-core long-range

interaction potential with two main parameters:

U0 =
Ω4

8∆3
and Rc =

(
C6

2∆

) 1
6

(2.33)

It is interesting to note that the potential depth U0 depends solely on the dressing

parameters ∆ and Ω. This comes about as an extra correction of the light-shift that

the atoms feel when the strong van der Waals forces effectively decouple the |rr〉 state.

The effect of the C6 coefficient rather than defining the potential strength will set the

range of the interactions Rc. The interaction strength will be reduced from van der

Waals interactions of the order of hundreds of MHz at typical inter-particle spacings

to the order of kHz allowing one to reach non-trivial regimes where the long-range

interaction and kinetic energy scales compete with each other.

This interaction potential is of course an approximation of the true potential that

atoms would “feel”. Numerically diagonalizing the matrix of Eq. 2.22 is quite simple
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Property Variable
Scaling ∝ n∗

α

fixed ∆ fixed β

Rabi Frequency Ω -3/2 -3/2

Laser Detuning ∆ 0 -3/2

Rydberg Admixture β -3/2 0

Dressed Radiative Lifetime β−2τ0 6 3

Dressed Blackbody Decay Lifetime β−2τBB 5 2

Dressed Potential Depth U0 −6 -3/2

Dressed Potential Range Rc 11/6 25/12

Table 2.4: Scaling of Rydberg dressing properties with n∗. Scalings of useful
Rydberg dressing properties with principal quantum number.

and in order to find the interaction potential one needs to calculate the eigenenergy

of the eigenvector which has most overlap with the ground-state |gg〉. In Ch. 3 we

will explore all the considerations that went into calculating and measuring the true

dressed potential on the atoms. However, this perturbative approximation provides

a very useful tool to design a Rydberg dressing experiment and understanding the

principles behind the technique.

2.8.3 Scaling of Rydberg dressing parameters

Since the Rydberg dressing parameters depend so strongly on the laser parameters Ω

and ∆, it will be useful to rewrite the scalings of these parameters as a function of

principal quantum number n∗ (Table. 2.4) and as a factor of laser power P at a fixed

n (Table. 2.5).

In terms of experimental realization, Rydberg dressing can be done using a single

UV laser as described in Sec. 3.4. This means that for a given experiment, the overall

power P of the laser will be relatively constant irrespective of the principal quantum

number one is coupling to. The Rabi frequency of a laser light-field goes as the square
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Property Variable
Scaling ∝ Pα

fixed ∆ fixed β

Rabi Frequency Ω 1/2 1/2

Laser Detuning ∆ 0 1/2

Rydberg Admixture β 1/2 0

Dressed Lifetime β−2τ -1 0

Dressed Potential Depth U0 2 1/2

Dressed Potential Range Rc 0 -1/12

Interaction-to-Lifetime ratio U0τdr 1 1/2

Table 2.5: Scaling of Rydberg dressing properties with laser power P . Scal-
ings of useful Rydberg dressing properties with laser power showing the importance of
having a strong dressing light field. Particularly, the interaction-to-lifetime increases
irrespective of which parameters ∆ or β are fixed.

root of the laser power given by the relation:

Ω =

√
4e2P

ε0π~2cw2
0

µ2S,nP (2.34)

Where w0 is the waist of the laser. With this relation and the Rydberg property

scalings from Table. 2.1 in mind, we can write down corrected scaling laws for the

the Rydberg dressing properties in two limits: one keeping the detuning ∆ from reso-

nance constant and one keeping the Rydberg admixture β constant. These limits are

useful to think about the interaction potentials one can engineer using the available

parameters. The scalings are summarized in Tables. 2.4 and 2.5.

The first takeaway from these tables is that the interaction range Rc is most

susceptible to principal quantum number and increases roughly quadratically while it

is essentially independent of power. This should not be a surprise as the C6 coefficient

depends very strongly on n∗ as well. This means that for a known achieved laser

power P one would only have a range of nP states to chose from in order to get
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a desired interaction potential for a fixed inter-particle spacing (such as an optical

lattice spacing).

The second takeaway is that power matters. Essentially all parameters scale

favorably with power P . Particularly the figure of merit of the interaction-to-lifetime

ratio U0τdr which benchmarks the coherence of the system. For any experimental

realization it is very important to maximize the power of the available laser. Much

work of this thesis went into maintaining the correct working of our ultraviolet laser

(Sec. 3.4) to maximize its power throughput but also to stabilize it and avoid extra

decoherence mechanisms due to intensity noise. It is also noteworthy that the Rabi

frequency also depends strongly on its focus waist w0, carefully designing the optical

setup will be important and careful considerations should be made to understand how

it affects the achievable simulation models as explained in Ch. 6.

2.9 Calculating Rydberg properties using Python

packages

While the perturbative limit is sufficient to understand a great deal of the properties

of Rydberg atoms for the purpose of planning an experiment, more complicated cal-

culations are required to fully understand the interaction potentials. Nowadays there

are two Python packages that simplify this task and which were used for this thesis:

the Alkali-Rydberg Calculator (ARC) [76] and Pair Interaction (PI) [87]. There are

advantages to each package and we used them where their strengths were most useful.

Alkali-Rydberg Calculator

The ARC package [76] provides a very convenient and well documented package

with great functionalities. However, it lacks the ability to solve for the Hamiltonian

with strong magnetic fields which is necessary for our experiment. Nevertheless, it
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is incredibly useful for properties that are invariant under magnetic field such as

lifetimes and decay channels. It was however an invaluable resource to plan for our

experiment as shown in Fig. 2.2 and to compare for early perturbative calculations

for pedagogical purposes.

Pair Interaction

The PI package [87] does provide the capability of high magnetic fields with the

caveat of a more wanting documentation. A great deal of work was done to decipher

the various and very useful functions in order to build scripts used for analysis and

exploration. In the end, this package was what allowed us to best understand the

interaction potentials of our system and the one we relied on the most. All of the

calculations pertaining the pair potential calculations presented in Ch. 3 and Ch. 6

were performed using this package. A very useful capability of this package is that

it can save the overlap of a particular pair potential with the Rydberg states in

|n, l, j,m〉 basis providing a very useful tool to calculate dressing potentials as shown

in Sec. 3.3. The only caveat is that one needs to take into account the Clebsch-Gordan

coefficients (Table. 3.1) to transform into the high magnetic field |nl,ml,ms,mI〉 basis

(Sec. 3.1.1).

2.9.1 Multi-polar Expansion

Solving for the full Hamiltonian between two Rydberg states involves taking into

account many nearby pair states and how their couplings modify each other. In

the previous sections, a lot of work went into describing the perturbative calculation

with only dipole-dipole couplings. This is sufficient for large distances. However

for close distances, which are most important for experiments, taking into account

higher order processes is needed. We will refer to this multi-polar expansion in terms

of two variables: κ = 1, 2, . . . for dipole, quadrupole, etc. and ρ = κ1 + κ2 + 1
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Low Field High Field

∆l =

{
±0, 2, . . . κ for κ even

±1, 3, . . . κ for κ odd
∆l =

{
±0, 2, . . . κ for κ even

±1, 3, . . . κ for κ odd

∆s = 0 (same) ∆s = 0 and ∆ms = 0

∆j = ±0, 1, . . . κ and j + j′ ≤ κ ∆I = 0 and ∆mI = 0

∆mj = ±0, 1, . . . κ ∆ml = ±0, 1, . . . κ

Table 2.6: Selection rules on multi-polar expansion. Selection rules for matrix
elements of spherical harmonics with multi-polar expansions in the low and high
magnetic field limits. The parameter κ = 1, 2, . . . refers to dipole, quadrupole, etc.
expansions [87]. The difference arises from the change of useful quantum numbers
according to the Paschen-Back effect discussed in Sec. 3.1.1.

where the index refers to each atom considered in the pair calculation. For example,

ρ = 3 (minimum) implies a calculation with only dipole-dipole interactions. This also

presents an expansion of the usual selection rules:

Particularly the PI package also allows for the addition of a diamagnetic term to

the full Hamiltonian. No appreciable difference in the pair-potentials, memory usage,

or speed of the calculations was found in our studies so we always had this term on.

Implementation on Pair Interaction

To solve the pair-potential Hamiltonian, you first define a specific pair-state you are

interested in the |n, l, j,m〉 ⊗ |n′, l′, j′,m′〉 basis. Constraints on the amount of states

that will be taken into account for the calculation need to be defined in order to

improve speed and memory usage. These constraints are the range of energies for the

single Rydberg state ∆Esingle, the range of principal quantum number ∆n, the range

of angular momenta ∆l, and the range of energies of pair states to consider ∆Epair.

The values selected for these should be sufficient such that we are taking into account

all the relevant states for the selected multi-polar expansion ρ as expected from the

selection rules in Table. 2.6. For our calculations, we fixed ∆n = 3 and ∆l = 3;
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this gave us a sufficient breadth of states to get correct results. The ranges in the

energies were a bit more important to set correctly as they are the most important

constraint on the size of the eigenbasis. In principle ∆Esingle is always larger than

∆Epair because some pairs of states of very different energies will form a pair state

that is very close to our target states. For calculations on |28P 〉 pair-states we

found that ∆Esingle = 500 GHz and ∆Epair = 200 GHz was sufficient. However, for

larger principal quantum numbers we reduced this as the density of states increases

according to the binding energy Eq. 2.1.

We can also define the limit of the multi-polar expansion ρ, the angle of interaction

θ, as well as electric E and magnetic B fields as vectors. Finally, we have chosen a

reasonably spaced grid of distances that enable us to see the features of the potentials

at the distances important for our lattice.
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Chapter 3

Rydberg dressing of 6Li

The previous chapter introduced the physics of Rydberg atoms and their properties.

The technique of Rydberg dressing is also discussed and its potential impact as a

quantum simulation tool is evident. Our group is not the first to develop this tech-

nique. Other groups have successfully implemented it in heavy atoms such as Rb and

Cs with impressive results realizing many-body dynamics and electrometry measure-

ments in frozen systems [55, 71–75, 88–91]. However, Rydberg dressing of itinerant

systems has been an elusive goal. This limitation has been mostly due to non-trivial

decay mechanisms limiting the achievable lifetime of the atomic sample as will be

discussed in Sec. 3.7.

In our experiment, we set out to develop the technique of Rydberg dressing for

the fermionic species of 6Li. The main driver for this endeavor was the opportunity

to take advantage of lithium’s light mass in order to engineer itinerant systems with

long-range interactions. We have successfully implemented such a system in the form

of a t−V model as detailed in Ch. 6. In this chapter, we will cover both the theoretical

and experimental considerations that were taken for the successful implementation of

this technique in 6Li.
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3.1 Rydberg dressing scheme

Our experiment was designed to be a very flexible quantum simulator of the Fermi-

Hubbard model with single-site resolution [92, 93]. However, Rydberg dressing was

not considered in its original design. This presented some constraints both in technical

difficulties (e.g. window coatings) and in terms of the actual Rydberg dressing scheme

(e.g. polarization, state, etc.). 6Li has a broad Feshbach resonance in the∼ 700−850G

range [94]. As such, our experiment includes a set of coils that can provide very

stable fields up to these large magnetic fields in order to tune the interactions of

the system [92]. The existing protocols to generate low-entropy many-body states of

ground state atoms operated at relatively large magnetic fields of ∼ 600 G. Given

this, we considered the idea of performing Rydberg dressing at such fields, finding

that the strong magnetic dispersion of Rydberg atoms (Fig. 3.1b) provides a “cleaner”

realization of the basic Rydberg dressing ideas explained in Sec. 2.8. This is in contrast

with previous realizations of Rydberg dressing in other species which focused on very

low magnetic fields in the mG range [55, 75, 90].

3.1.1 Lithium states at high magnetic fields

Before going into the behavior of specific states with high magnetic fields, it will be

useful to have in mind the selection rules ∆l = 0 and ∆ml = 0,±1 (for π, σ± photons

respectively) at high fields (Table. 2.6). This means that
∣∣2S1/2

〉
ground-state atoms

can only be connected to a |nP 〉 Rydberg state under a single-photon dressing scheme.

Moreover, a single-photon cannot change the nuclear moment mI or spin ms of an

atom either. Therefore, the specific final |ml,ms,mI〉 state will be defined only by

the chosen initial hyperfine ground-state and the polarization of the photon.
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Paschen-Back regime

At low magnetic fields, the hyperfine coupling dominates over the Zeeman coupling

and the “good” quantum numbers are F̂ = Ĵ + Î and its projection along the

magnetic field. At very large fields, also known as the Paschen-Back regime, the

field overpowers all angular momenta (L̂, Ŝ, and Î) cross-couplings aligning them.

This presents a change in the “good” quantum numbers to the |ml,ms,mI〉 basis for

the particular projection of each momenta to the magnetic field1. In this limit, the

eigenenergies are defined by the initial fine- and hyperfine-structure splittings (∆EFS

and ∆EHFS) plus a magnetic dispersion term we can write down as:

∆EPB ≈ BµB (glml + gsms + gImI) (3.1)

Here, B is the magnetic field; µB ∼ 1.4 MHz/G is the Bohr magneton; and gl ∼ 1,

gs ∼ 2, and gI ∼ −0.0005 are the g-factors of their respective angular momenta [95].

Note how the nuclear spin Î g-factor is much smaller than the others. Therefore, for

Rydberg atoms were the initial hyperfine-structure splitting is very small, states with

different mI are essentially degenerate.

Ground-states

Fig. 3.1a shows the full energy dispersion of the
∣∣2S1/2

〉
ground-states of 6Li up to a

field of 500 G. In our experiment we worked mostly at a field of ∼ 595 G. At this

strong field, the ground-states are not quite yet in the Paschen-Back regime. Finding

an analytical solution of the full state for 6Li ground-states is possible [96]. The

existing protocols of our machine made it simpler to work with states |1〉 − |3〉. At

1Throughout the thesis we also refer to this basis as |nl,ml,ms,mI〉 to describe the full state.
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Figure 3.1: 6Li
∣∣2S1/2

〉
and |28P 〉 states vs. Magnetic Field. 6Li atomic states

dispersion with magnetic field for (a)
∣∣2S1/2

〉
ground-states and (b) |28P 〉 Rydberg

states. Each color corresponds to a different state. |k〉 and |k∗〉 states are labeled
by increasing energy at high magnetic fields and shown in the |ml,ms,mI〉 basis.
The Rydberg states do not specify a mI value as its energy separation is negligible
compared to ground-states. Note how the Rydberg states reach the Paschen-Back
regime much quicker than the ground-state atoms.

these fields, states |1〉 and |2〉 are ' 98% pure while state |3〉 remains completely pure

at all fields2 in their respective |ml,ms,mI〉 basis.

With this in mind, we prefer Rydberg dressing protocols where the initial state is

|3〉 to avoid complicated effects of dressing mixed states. However, experimentally we

did not find any difference in the lifetime with initial hyperfine ground-state. In fact,

most of our characterization of lifetimes and interaction was done starting in the |1〉

(and |2〉 in the case of Ramsey interferometry) state.

Rydberg nP states

Fig. 3.1b shows the full energy dispersion of the |28P 〉 Rydberg state of 6Li up to

a field of 5 G.The dispersion of different |nP 〉 Rydberg states is expected to be very

2State |6〉 is also pure at all fields, but pumping atoms to this highest energy ground-state is a
bit complicated. Future possible protocols though might benefit from using this initial state.
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similar. The energy levels were calculated using Pair Interaction [87]. As expected

from Eq. 3.1, the Rydberg states disperse according to their total angular momentum

projection onto the magnetic field direction. The main difference with ground-state

atoms is that the hyperfine-splitting is much smaller leading to states with different

mI to be closely degenerate and unresolved. This leads to the simplification that

Rydberg states with the same ml and ms quantum numbers but different mI values

will still interact via a van der Waals interaction potential as described in Sec. 2.5.1.

We can make this assumption because the states being closely degenerate leads to

very long timescales for the exchange of a photon due to the Heisenberg uncertainty

principle3. For the following discussions, we will number the Rydberg states with

increasing energy and differentiate them from ground-states by adding an asterisk

|k∗〉 to them.

With the selection rules in mind (Table. 2.6) we will note that ground-states

|1〉− |3〉 can only connect to Rydberg states |1∗〉− |3∗〉 via a single-photon transition

dependent on its polarization. The mI value of the Rydberg state will be defined

by the specific ground-state used. The strong dispersion of the states with magnetic

fields does provide an advantage over the Rydberg dressing schemes of other groups

since at our typical fields the closest Rydberg states in a different hyperfine state are

2 × µB × 600 G ∼ 1.7 GHz away. This allows us to think of any dressing scheme as

connecting mainly to a single pair-potential with “mostly” van der Waals character

(Sec. 3.3) up to small corrections and avoided crossings.

Basis transformation

As explained in Sec. 2.9, the Pair Interaction package used to calculate the pair-

potentials works in the |j,m〉 basis which is only really useful at or near zero magnetic

field. For this reason, it is useful to calculate and write down the Clebsch-Gordan

3Also, a single photon cannot change the mI value of the atom as seen in Table. 2.6 and higher
multi-polar couplings are exponentially smaller in amplitude.
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2

〉
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2

〉
1√
3

0 0
√

2
3

0 0

|3∗〉 =
∣∣+1,−1

2

〉
0

√
2
3

0 0 1√
3

0

|4∗〉 =
∣∣−1,+1

2

〉
-
√

2
3

0 0 1√
3

0 0

|5∗〉 =
∣∣ 0,+1

2

〉
0 1√

3
0 0 -

√
2
3

0

|6∗〉 =
∣∣+1,+1

2

〉
0 0 0 0 0 1

Table 3.1: Clebsch-Gordan coefficients between |ml,ms〉 and |j,m〉 basis. Note
that the rows correspond to the Rydberg states |k∗〉 in descending order.

coefficients between the basis. Table. 3.1 shows these coefficients. One interesting

property to point out from the table is that states |1∗〉 and |6∗〉 are pure at all magnetic

fields. This makes them possible ideal candidates for future dressing schemes to

avoid overlaps with other states at short distances. It is important to note that Pair

Interaction can take into account extra terms in the Hamiltonian such as multi-polar

expansions and diamagnetism. As such, when comparing the calculated pair-states

in the |j,m〉 basis, we find numerical deviations from the values of Table. 3.1 on the

order or ∼ 1%. This is not true for the pure states.

3.1.2 Dressing scheme

The configuration of the Rydberg excitation light used in our experiment only allows

us to excite the Rydberg transition with linear polarization. This is due to the

strong magnetic field pointing in the vertical direction z while the laser is pointing in

direction y as shown in Fig. 3.8. This configuration makes it such that the polarization

of the laser light is only well-defined when we have vertical linear polarization (z).

Anything else will be some superposition of the possible polarizations. For example,
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if we sent horizontal polarization, the light “seen” by the atoms will be equally in

σ+ and σ−. For any arbitrary polarization and laser pointing, one only has to care

that for the quantization axis along z, the polarizations are defined as π0 = ẑ and

σ± = 1√
2

(x̂± ŷ). Thus all you need to do is decompose the incoming polarization

into this basis.

With this simplest configuration, the most natural dressing scheme is to connect

ground-states |1〉− |3〉 with Rydberg state |2∗〉 using a vertically polarized π photon.

It would be ideal to use state |3〉 due to it being pure under magnetic field fluctua-

tions. However, for a few measurements such as Ramsey spectroscopy (Sec. 3.8) it is

necessary to use states |1〉 and |2〉 to avoid resonant excitations.

Possible improved schemes

As previously mentioned, there are two Rydberg states that remain pure for all fields

and as such have less overlap with neighboring states. Ideally, we could think of two

“perfect” dressing schemes: |3〉 → |1∗〉 and |6〉 → |6∗〉. However, in order to do this

we would need to either send the UV laser from the bottom (technically challenging

in our setup) or generate a magnetic field along the lattice direction y so that circular

polarization can be well-defined. The second option presents its own issues, such as

realistically only being able to produce ≤ 10G with our current setup. In addition,

with the quantization axis pointing along the lattice plane the interactions will be

asymmetric (Sec. 2.5.1).

Another option, is to use the horizontal polarization and take a hit of 1√
2

in the

Rabi frequency. Though one would also need to take into account what the effect of

the opposite circular polarization will be. In this particular case, a potentially very

viable scheme is |6〉 → |6∗〉, as the extra σ− light will have minimal effects since the

dressing detunings need to be positive farther away from state |4∗〉.
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Figure 3.2: |28P 〉 ⊗ |28P 〉 pair-states at
a field of 600 G. Pair-states between 6Li
|28P 〉 Rydberg states separated according
to Eq. 3.1 for a field B = 600 G. The col-
ors represent overlap with the |k∗〉 ⊗ |k∗〉
pair states as numbered in Fig. 3.1b. The
“jungle” of gray lines correspond to other
nearby pair states with different quantum
numbers and mostly no overlap to the tar-
get states. These states however cause
avoided crossings.

3.2 Pair-state potential calculations

In Sec. 2.9.1 we described the methods for calculations made using Pair-Interaction [87].

Now, with a better understanding of the dressing scheme and the high field physics of

Rydberg atoms, we performed a lot of exploratory calculations to better understand

the dressed potentials and lifetime limitations.

The types of potentials that we are most interested in are the ones made by

pairs of the same Rydberg state |nP 〉 ⊗ |nP 〉. Using the Pair-Interaction package we

built scripts that, for a desired principal quantum number, calculated all nearby pair-

states and kept track of their overlap with all |k∗〉 ⊗ |m∗〉 pair-states4 as a function

of distance.

Fig. 3.2 shows one of these calculations for the |28P 〉⊗ |28P 〉 states at a magnetic

field of 600 G. Here, we can appreciate the huge “jungle” of nearby states with

different quantum numbers. While most of them have no overlap with the target

states, they do cause avoided crossings that need to be taken into account when

calculating dressed potentials as detailed in Sec. 3.3. It is also important to note that

4We are most interested in pair-states with the same components (e.g. |k∗〉 ⊗ |k∗〉). However,
keeping track of mixed states is useful for molecular potentials.
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Figure 3.3: |2∗〉 ⊗ |2∗〉 pair-state at 600 G vs. principal quantum number. The
|2∗〉 ⊗ |2∗〉 pair-state at a 600 G field is shown for |23P 〉, |31P 〉, and |40P 〉 Rydberg
states. The strength of the color denotes the overlap with the |2∗〉 ⊗ |2∗〉 pair-state.
Note how the “jungle” of gray lines gets farther out, possibly leading to non-trivial
loss mechanisms due to resonant couplings.

we observe the expected dispersion from Eq. 3.1 as E|k∗〉⊗|m∗〉(∞) = E|k∗〉+E|m∗〉. At

600 G this separation is ∼ 1.7 GHz which is quite large compared to typical dressing

detunings ∆ / 100 MHz allowing us to connect individual hyperfine ground-states

with a single state of the Rydberg fine-structure.

As we decided to use a dressing scheme with vertical linear polarization, the rest

of the discussion in this section will focus only on |2∗〉 ⊗ |2∗〉 states.

3.2.1 Pair-states vs. principal quantum number

A first important consideration is what specific |nP 〉 Rydberg state to connect to.

This is by far the biggest knob in our experiment. Originally, from the scalings shown

in Table 2.4 we estimated that the |31P 〉 state would be an ideal candidate for our

intended scheme. This would be a sufficiently strong interaction strength to lifetime

ratio and a suitable range. However, we quickly found that the lifetime of the atoms

was not close to the expected Rydberg dressed lifetime. We explored the dependence
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with other principal quantum number states and found that the lower we got, the

closer the measured lifetime was to the expected Rydberg dressed lifetime5.

Fig. 3.3 shows the calculated |2∗〉 ⊗ |2∗〉 pair potentials for different principal

quantum numbers. The “clean” van der Waals picture of the Rydberg potentials is

only true at low principal quantum numbers. As one increases this knob, the “jungle”

of lines with all of their overlaps and avoided crossings gets farther and farther away.

It is our understanding that one component of the non-trivial loss mechanisms we

encountered in our system is related to resonant coupling with nearby pair-states

rather than black-body decay. This was evidenced by our finding that lower principal

quantum numbers such as |28P 〉 had increased relative lifetime to the theoretically

expected one. Particularly damaging should be cases such as the ones shown in the

second and third panels of Fig. 3.3 for |31P 〉 and |40P 〉 where these nearby pair states

are at typical inter-particle spacings in our lattice.

3.2.2 Pair-states vs. magnetic field

Another big knob in our experiment was the magnetic field. As explained before, we

did most of our characterization and all of our experiments at a ∼ 592 G purely due

to convenience on the existing protocols. After some characterization, we found that

the range of 300−600G was good for two reasons. First, these fields are large enough

that we can simplify our understanding as only coupling to the desired fine-structure

Rydberg state. Second, at larger fields we measured reduced lifetimes (Fig. 3.19)

which we attribute to having the strong magnetic dispersion bringing resonant pair-

states near the target state leading to similar decay mechanisms such as the ones

limiting large principal quantum numbers as explained in the previous subsection.

Fig. 3.4 shows the calculated |2∗〉⊗|2∗〉 pair potentials of |28P 〉 for different magnetic

5This was before our better understanding came from the Pair Interaction simulations.
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Figure 3.4: |2∗〉⊗ |2∗〉 pair-state of |28P 〉 vs. magnetic field. The |28P 〉 Rydberg
state |2∗〉⊗ |2∗〉 pair-state is shown for B = 10 G, 600 G, and 1000 G. The strength of
the color denotes the overlap with the |2∗〉 ⊗ |2∗〉 pair-state. At low fields, |k∗〉 states
are not yet well separated leading to many close lines with non-vanishing overlaps. At
very high fields, the magnetic dispersion is so large that many more lines are around
the desired target state.

fields. We eventually used the pair-state shown in the second panel of this figure for

our experiments described in Ch. 6.

3.2.3 Förster resonances

While not used in our system, as part of this thesis we studied the possibility of

dressing 6Li near a Förster resonance [97–103]. In Sec. 2.5.1 we described the van

der Waals character of Rydberg pair-potentials (e.g. labeled |a, b〉) as a second order

perturbation theory effect due to a virtual two-photon exchange to a different pair-

state (|α, β〉). From Eq. 2.14 we understand that the strength of these couplings

comes not only from the dipole matrix elements between the states, but also from the

energy difference δαβ = E|αβ〉−E|ab〉 between the states. We call this energy difference

a Förster defect.

A Förster resonance appears when, for some parameter values, a particular defect

δαβ vanishes leading to heavily modified pair-state potentials. This can happen at zero

field for particular principal quantum numbers n. Fig. 2.4 shows how the numerically

44



calculated C6 coefficients diverge around |33P 〉. However, the previous sections show

how magnetic fields also have a strong effect on the nearby pair-states. In App. C

we show calculations of the Förster defects and resonances of 6Li and their behavior

at different magnetic fields. In principle, one could use this knowledge to engineer a

dressing scheme to a “molecular” potential with a valley right at the lattice spacing

allowing for much more favorable dressing potential scalings as proposed in Ref. [102].

3.3 Full Rydberg-dressed potential

In Sec. 2.8 we worked through the derivation of the Rydberg-dressed potential between

two ground-state atoms off-resonantly coupled to Rydberg states which interact via

van der Waals forces. Through this derivation we arrived at a soft-core interaction

potential of the form shown in Eq. 2.32. We do mention that this potential is an

approximation valid only in the β → 0 limit. This is not a problem because numerical

diagonalization of the 4 × 4 matrix of Eq. 2.22 is simple enough to extract more

realistic potentials in terms of specific parameters. However, in order to find the

“true” interaction potential between two 6Li atoms in our optical lattice we need to

take into account a few extra considerations. In this section we will describe each of

these considerations and how to arrive at the full Rydberg-dressed potential shown

in Fig. 3.5.

3.3.1 Overlap with nearby pair-states

The simple van der Waals picture is not exactly correct as evidenced in the figures

of Sec. 3.2. For the true Rydberg pair-state landscape there is non-zero overlap

with other nearby pair-states which depend on the separation between the atoms.

Particularly at close distances, there are overlaps of the target state (|r〉⊗|r〉 = |r, r〉)

with multiple other nearby pair-states |p(R)〉. In order to extract a more realistic
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spread of Fig. 3.6. This figure corresponds
to Fig. 6.1b(inset).

dressed potential, we need to take into account the dressing of our ground-state

atoms with all of these other states taking into account the individual overlaps with

the target state. In the following, we will denote the overlap as αp(R) = 〈r, r|p(R)〉.

In order to do this, we are going to numerically solve the dressing Hamiltonian

from Eq. 2.21 for each individual pair-state potential V p(R):

Ĥp = Ĥsingle ⊗ Î + Î⊗ Ĥsingle + V p(R) |r〉 〈r| ⊗ |r〉 〈r| (3.2)

Here, the pair potentials V p(R) correspond to the calculated eigenenergies E|p〉(R)

subtracting the offset corresponding to the bare energy of the target state E|r,r〉(∞).

The parameter ∆ is the same as the intermediate states |g, r〉 and |r, g〉 are not affected

by the overlaps. The superscript p denotes each pair potential.

We can numerically solve for all dressed potentials Uk
dr(R) by diagonalizing the

individual Hamiltonians Ĥp and subtracting the expected light-shift offsets. Finally,

we can add all of these up taking into account the distance-dependent overlaps in
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order to extract:

Udr(R) =
∑
p

|αp(R)|2 Up
dr(R) (3.3)

As we can observe in Fig. 3.4b, if we follow the overlap, we get essentially a simple

van der Waals potential up to some avoided crossings. Therefore, we expect that

the dressed potential taking into account overlaps from Eq. 3.3 will be very similar

to that of Eq. 2.32. In Fig. 3.5 we observe exactly this where the “full” dressed

potential has only small differences with the one calculated using the extracted C6

coefficient. However, now we can appreciate the effect of crossing “resonances” at close

distances where avoided crossings with the main pair-state happen. These resonances

are mostly sharp enough to not affect the overall potential.

Engineering repulsive interactions by dressing on a large avoided crossing

In general, the calculations made using the python packages seem to capture quite

well the true nature of Rydberg pair potentials. Recently, Ref. [103] performed spec-

troscopic measurements of molecular bound states created by an avoided crossing of

two coupled Rydberg pair-states of 87Rb. What they found is that they could pre-

dict with very high precision the energies of the molecular bound states even taking

into account the small modification due to an avoided crossing with a non-coupled

pair-state. These results mean that we can trust and use the calculations from the

python packages to “explore” the Rydberg parameter space. Potentially opening the

door to exploit “exotic” Rydberg dressing schemes which can provide more favorable

scalings or tunability.

In Ref. [102] one of such schemes is described where one would dress close to a

valley (or hill for attractive potentials) of a molecular potential like the one explored
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in Ref. [103] positioned approximately at 1 alatt . Depending on the height of the

valley, one can expect much more favorable interaction-to-lifetime ratios.

However, we do not need to limit ourselves to molecular potentials between coupled

pair-states. As shown in Fig. 3.2 the size of the avoided crossings with non-coupled

states can be quite sizable. One could imagine a way to engineer a dressed potential

with opposite sign to the natural van der Waals interaction by choosing the detuning

such that it falls right in the middle of one of such avoided crossings. As long as

resonances to pair-states with non-zero overlap are avoided, the Born-Oppenheimer

approximation is still valid. Depending on the position R of the crossing, one could

tune repulsive interactions for 6Li atoms or even more exotic potentials where the

nearest neighbor and next-nearest neighbor interactions are of opposite sign.

3.3.2 Wavefunction spread in optical lattice

The second consideration that we need to make is that since 6Li is so light, the atoms

in our optical lattice have a significant wavefunction spread and we cannot think

of them merely as point particles. To first order, we can write down the Wannier

functions of the atoms in our 2D lattice as a separable wavefunction Ψ(x, y, z) =

ψ(x)ψ(y)ψ(z) where ψ(r) = 1

(2πσ2
r)1/4

exp
(
− r2

4σ2
r

)
are the ground-states of a quantum

harmonic oscillator. For these wavefunctions, the spread σr =
√

~
2mωr

depends on the

mass and the trapping frequency in the particular dimension.

In our experiment, our atoms are trapped in a mixture of a 2D optical lattice in

the x− y plane with alatt ≈ 752 nm and a tightly confined vertical lattice to keep the

atoms in the 2D regime. In the particular case of the experiments described in Ch. 6,

the lattice trapping frequencies were ωx,y ≈ 2π × 54 kHz leading to spreads in the

x − y plane of σx,y ≈ 124 nm ≈ 0.17 alatt . The vertical lattice trapping frequency is

σz ≈ 2π×17 kHz leading to σz ≈ 222 nm ≈ 0.3 alatt . These wavefunction spreads cor-
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respond to the standard deviation of the approximately Gaussian probability densities

for the positions of each atom at a lattice site.

We are interested in finding the probability distribution P (|r1 − r2|) of the dis-

tance between two atoms at particular lattice sites. While the problem is easy to state,

for 3D probability distributions (even Gaussian ones) it is not analytically solvable.

The 1D case is analytically solvable though. To overcome this issue, we employ a

Monte-Carlo method where we randomly generate positions r1 and r2 and calculate

the resulting distance |r1 − r2|. We average and bin about 105 samples and extract a

discrete probability distribution for the distance between atoms. Fig. 3.6 shows this

probability distribution for the 3D and 1D case 1 alatt apart along with the known 1D

expected distribution P1D(|r1 − r2|) = δr
2σ
√
π

exp
(
− (r1−r2−alattx̂)2

4σ4

)
to benchmark the

method.

We find that the average distance between nearest neighboring atoms is actually a

bit larger than 1 alatt which is expected due to the probability spread in the directions

perpendicular to the separation. This will have the effect of reducing the “effective”

interaction that nearest neighboring atoms feel6. We can repeat this method for

all other possible distances of the atoms in the lattice and multiply their probability

6Depending on the “steepness” of the potential, it can also have the effect of increasing the
interaction strength as is the case of the next-nearest neighbor interaction of Fig. 3.5.
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distributions with the “full” dressed potential of Eq. 3.3 and find the actual interaction

energy between dressed atoms in our lattice. The pink points of Fig. 3.5 show these

interactions which were also used to benchmark the Ramsey spectroscopy (Sec. 3.8

and Fig. 6.3c-d).

It is important to mention that this method assumes an isotropic potential. As

described in Sec. 2.5.1 the van der Waals potential depends on the angle θ between

the aligned dipoles and the separation vector R. This affects the particular pair-state

potentials and overlaps as well and it is possible to take the angle θ into account for

the calculations. In principle, it is possible to carry out an exact calculation taking

this effect into account. However, for the parameters of Fig. 3.6 we only expect the

standard deviation of the angle to be σ(θ) =
√
〈θ2〉 ≈ 5.7◦ since 〈θ〉 = 0. This

should be a small enough angle that averaging using the pair potentials for θ = 0 is

a reasonable approximation.

3.3.3 Interaction potential between atoms in different

ground-states

The considerations previously mentioned are useful in general when dressing a system

consisting of atoms only in one ground-state. However, certain protocols such as

Ramsey interferometry discussed in Sec. 3.8 require us to start in a superposition state

of two different hyperfine states. Particularly in the case of Lithium, this presents an

issue in the form of the hyperfine splitting ∆0 ∼ 2π × 76 MHz (Fig. 3.1a) being of

the same order as the dressing detuning ∆. Therefore, unlike the previous Rydberg

dressing experiments with 87Rb of Ref. [75], we will need to take into account the

interaction potential between atoms in two different hyperfine ground-states.

To obtain the dressed potential between two atoms in different ground-states we

will follow a similar process to the one described in Sec. 2.8. First, we start by writing

down the single-particle Hamiltonians for each atom in the {|i〉 , |r〉} basis similar to
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Eq. 2.20 where i ∈ {1, 2} labels each ground-state:

Ĥ1 =

 0 Ω/2

Ω/2 −∆

 and Ĥ2 =

 0 Ω/2

Ω/2 −(∆ + ∆0)

 (3.4)

Using these and the van der Waals potential V (R) = −C6/R
6, we write down the

two-particle dressing Hamiltonian as

Ĥdr(R) = Ĥ1 ⊗ Î + Î⊗ Ĥ2 + V (R)(|r〉 〈r| ⊗ |r〉 〈r|). (3.5)

Here we are assuming that even though each hyperfine ground-state will connect to

a Rydberg state with different mI , these Rydberg states are not resolved and thus

interact as if they were the same |r〉.

We calculate the dressed potential by solving for the eigenenergy of the eigenstate

with maximum overlap with the bare ground-state |1〉 ⊗ |2〉. This can be done nu-

merically, or using perturbation theory up to 4th order in Ω assuming Ω � ∆. In

this limit, we find that the relevant eigenenergy has the form

E|1̃,2̃〉(R) =− Ω4(2∆ + ∆0)

16∆2(∆ + ∆0)2

(
1

1 + (2∆+∆0)R6

|C6|

)

+ δAC(Ω,∆) + δAC(Ω,∆ + ∆0), (3.6)

where δAC are the expected single-particle light-shifts (Eq. 2.31) and the first term

is the desired interaction potential which has some corrections that depend on ∆0

compared to Eq. 2.32.

Variation of Rabi couplings

Similarly, we can consider the case of the Rydberg dressed potential between two

atoms which experience the same detuning ∆ but different Rabi couplings Ω1 and
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Ω2. This is realistic in our experiment since the laser used is tightly focused at the

atoms as shown in Fig. 6.3b leading to a varying Rabi coupling over the atomic cloud.

However, the effect is not drastic. Taking for example an average Rabi coupling Ω

and individual Ωi = αiΩ, where α1 + α2 = 2, we will find that the Rydberg dressed

potential will be affected only in its depth by a factor of U∗0 = α2
1α

2
2U0. The change in

Ω does not affect the range of interactions which remains sensitive only to ∆ and the

C6 coefficient. This is one of the reasons we have limited our experiments to small

systems where the variation of Ω is minimal; therefore allowing us to simplify our

thinking of the interaction term and only care about the average Ω within the small

system.

3.4 Laser System

For single-photon excitation to the Rydberg state, we use a deep ultraviolet (UV)

laser system at 230 nm based on frequency-quadrupling light from a diode laser source

which we bought from Laser & Electro-Optic Solutions. A significant amount of time

was spent mantaining the laser at high intensity output. Working with UV light is

quite complicated and requires special considerations in the design of its optical paths.

Unfortunately, nearly every material absorbs light at our wavelength. Typical N-BK7

optics very low transmission and even for uncoated UV-grade fused silica we lose

about ∼ 10 % per optical element7. While it is possible to get better transmittance

with specialized AR-coatings, this can get expensive and inflexible quite fast. In our

experiment we only used standard uncoated Thorlabs UV-grade fused silica singlet

lenses, specially AR-coated 45◦ Laser-Optik mirrors with > 98.5% reflection, and 0th

order half- and quarter-waveplates from Altos Photonics. These considerations were

needed in order to maximize the final UV power at the atoms which is very important

for Rydberg dressing as shown in Table. 2.5. In this section, we will describe the

7About 4% per uncoated surface and some small absorption.
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technical aspects of our laser system to do single-photon excitation to |nP 〉 Rydberg

states of our atoms.

3.4.1 Ultraviolet Laser

As previously mentioned, we bought a laser system from Laser & Electro-Optic So-

lutions. The system consists of 3 main components. First, there is a 920 nm MOPA

laser consisting of a diode and Tapered Amplifier which outputs ∼ 1.5 W. This laser

has an extra output of ∼ 10 mW which is used for frequency stabilization. Second,

there is a frequency doubling bow-tie cavity using a KNbO3 non-linear crystal which

when properly tuned outputs ∼ 750 mW at 460 nm. Finally, there is a second fre-

quency doubling bow-tie cavity using an α-BBO crystal which requires a constant

flux of oxygen in order to avoid degradation. This second cavity was not as efficient,

and when properly aligned we could expect ' 40 mW of 230 nm UV light8.

The UV output of this system is a beam with horizontal linear polarization focused

1.5 m away to a waist of ∼ 0.6 mm. The beam-shape is not exactly Gaussian, there are

ripples in the horizontal direction which are attributed to the walk-ff in the crystal.

However, when focused down to the order of tens of µm it does have an almost

perfectly Gaussian profile up to some small side-lobes.

3.4.2 Frequency stabilization

The frequency of the 920 nm laser is stabilized to a Stable Laser Systems ultralow

expansion glass (ULE) cavity using a Pound-Drever-Hall scheme. In order to lock the

laser at arbitrary frequencies, we use a fiberized Electro-Optic Modulator (EOSpace

PM-0S5-10-PFA-PFA-900/930) to lock the laser to a tunable sideband dependent on

8When the laser was new we could easily achieve up to 75 mW. However, the dressing experiments
happened almost 3 years later by which time the crystal had degraded. A lot of careful alignment
on the specific point the light passed through the crystal was needed just to get > 40 mW
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the frequency driving the EOM [104]. A schematic of the experimental setup is shown

in Fig. 3.7a.

The ULE cavity is surrounded by a homebuilt temperature controlled heat shield

inside of a vacuum chamber to ensure its stability and reliability as a reference. The

temperature is stabilized to ∼ 30 °C with a very slow PI servo with time constant of

about 3 hr. Fig. 3.7b shows oscilloscope data of the transmission lines of the ULE

cavity. The measured free spectral range (FSR) is 1497.15(1) MHz. We also looked

at the transmission profile of a single line and measured a linewidth of 372(1) kHz

(Fig. 3.7c). Assuming that the measured linewidth is not limited by the laser itself,

we conclude that the finesse of our ULE cavity is ∼ 4000. This is important, because

the final linewidth of the 230 nm light will be four times that of the stabilized 920 nm

laser due to the frequency-quadrupling.

3.4.3 Intensity stabilization

Particularly for Rydberg dressing, it is important to have a very stable intensity. The

fractional power stability of the UV light after the second cavity is about 10% which

was sufficient for experiments realizing an Ising model through resonant coupling to

a Rydberg state (Ch. 4). However, in the case of dressing, power stability is more

critical due to the interaction strength having a quartic dependence on the Rabi fre-

quency (U0 ∝ Ω4). Furthermore, the stability of the power during spin-echo Ramsey

interferometry protocols (Sec. 3.8) is important to cancel the phases accumulated due

to the single-particle light shift. We manage to improve the fractional power stability

to much better than 1% by adding a noise-eater.

The noise-eater consists of an electro-optic polarization modulator or Pockels cell

(QuBig PCx2B-UV), an α-BBO Glan-Taylor polarizer (EKSMA 441-2108), and two

custom UV waveplates. We drive the Pockels cell using a ±200 V high-voltage am-

plifier (Thorlabs HVA200) and a NewFocus PI servo controller. The Pockels cell
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essentially acts as a voltage-tuned variable waveplate. Together with the waveplates

and the polarizer, we can tune the system to get stable laser light with an efficiency

of ∼ 60%. The polarization output of the polarizer was aligned to be vertical. By

measuring the laser power using a pick-off and feeding back on the noise-eater, we

suppressed intensity noise for frequencies up to 1 MHz and eliminated shot-to-shot

drifts in the UV light intensity. The electronics had to be kept as close as possible to

the setup due to concerns about the high-voltages and to obtain fast servo response.

This upgrade to the system was required to be able to get the results described in

Ch. 6. Fig. 3.8b shows this noise-eater as part of the general laser system for Rydberg

dressing.

3.4.4 Optical setup

There have been two general iterations of the optical setup one for each of the ex-

periments described in Ch. 4 and Ch. 6. Common to both of them is the use of

a specially AR coated UV-grade fused silica acousto-optic modulator (IntraAction

ASM-1501LA61). This AOM works using an acoustic “shear” mode and provides an

efficiency of ∼ 85% on the first order. It has a center frequency of 150 MHz and a

±25 MHz tuning range. We drive it using a fast voltage-controlled oscillator (MiniCir-

cuits ZX95-200A+). The main laser system and the AOM sit in the main experiment

laser table and using a periscope we bring it up to the vacuum chamber level. We use

a final lens with 500 mm focal length to focus the beam at the atoms in the center

of the table. One important limitation of our current setup is that the machine was

not designed with single-photon Rydberg excitations in mind. Therefore, it was un-

known to us whether the UV would make it through the UV-grade fused silica coated

windows or if it would make a hole in the coating. We observe a total reflection of

∼ 30% from the first window and a transmission of ∼ 50% from the second window

leading us to estimate an efficiency of ∼ 70% of the incoming UV light at the atoms.
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The reflections are quite strong and careful consideration of the input angles had to

be taken into account to avoid spurious reflections at the atoms9. The UV beam is

aligned close to the light-sheet potential optics and is aligned parallel to the y axis of

our optical lattice.

2D Ising setup

To obtain fast amplitude and frequency control of the UV light, we placed the AOM

at the focus of a telescope and imaged it onto the atoms. This way, we were able to

freely tune the frequency driving the AOM with the 1st order while keeping it aligned

to the atoms. With this setup, we are able to modulate both the Rabi coupling and

detuning of the laser by adjusting the amplitude and frequency at which we drive

the AOM. Fig. 3.8a shows a schematic of this setup. Tightly focusing the light to a

waist ∼ 40 µm at the AOM also has the effect of reducing the efficiency of the AOM

to ∼ 55%.

The 150 MHz frequency of the AOM has to be taken into account as an offset

to the cavity sideband values measured with spectroscopy. A mirror after the last

focusing lens was used to fine align the UV beam at the position of the atoms inside

of the vacuum chamber. The expected beam waist of the UV beam at the atoms due

to the telescope setup is ≈31µm.

3.4.5 Rydberg dressing setup

For dressing, we did not need the fast modulation of the frequency. We cared mostly

about a stable and powerful source. We achieved this by adding the noise-eater to

the setup and modifying the telescope so that the beam was focused to a waist of

∼ 16 µm at the atoms. We attempted even more aggressive telescopes but the extra

difficulty in alignment outweighed the gain in Ω. The AOM here was used mostly

9At some point we lost a week because we aligned a reflection rather than the main beam.
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as a very fast switch to generate pulses of a precise width necessary for the correct

characterization of the dressed potential. Fig. 3.8b shows a schematic of this setup.

3.5 Spectroscopy of 6Li Rydberg states

Once the laser is set up and the optics are roughly aligned, the next important

step is to align the laser to the particular wavelength necessary to couple to specific

|nP 〉 Rydberg states. This was not a necessarily simple question as the NIST Atomic

Spectra Database [105] only lists the transition wavelengths up to |32P 〉. It is possible

however to calculate the expected transition wavelength using the binding energy

(Eq. 2.1) and the ionization energy as explained in App. D.

In Table. D.1 we summarize the transitions that were found as part of this thesis.

We find that the calculated expected values can be trusted up to the resolution that

the ULE cavity resonances provides. In this section, we will explain the spectroscopy

setup and procedures used to identify these transition wavelengths.

3.5.1 “V-scheme” spectroscopy

For initial identification of the Rydberg lines, we performed a “V-scheme” spec-

troscopy [106] with the 230 nm beam and a diode laser driving the D2 transition

of lithium at 671 nm on an external spectroscopy cell with a hot 6Li vapor10. The

basic principle of this scheme is to “shelve” some of the 6Li atoms in the Rydberg

state using the 230 nm laser beam and thus affect the absorption spectra of a counter-

propagating 671 nm laser. The effect is very small, therefore, needed to use a balanced

photo-diode and compare the difference of the signals of two beams: one with counter-

propagating UV light and one without it. To find a reference of the transition there

10We needed to use a large current DC power supply to heat up the spectroscopy cell. We found
that usual AC power supplies lead to strong magnetic field effects were the line “shakes” decreasing
the signal-to-noise of the measurement.
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was the possibility of measuring a simple Doppler-Free Spectroscopy (DFS) spectra

by unblocking or unblocking a beam. Fig. 3.9a shows a schematic of the experimental

setup for this mixed “V-scheme” and DFS setup. The UV light is sent directly from

the experiment table to the laser table using a flip mirror before the optics of Fig. 3.8.

For Doppler-Free Spectroscopy of the 6Li D2 line, we expect to see two deple-

tions due to the hyperfine ground-states and a crossover peak. The distance be-

tween the depletions should be equal to 228 MHz (Fig. 3.9b). When performing

the “V-scheme” spectroscopy we only expect to see two depletions corresponding

to the hyperfine ground-state transitions. However, the distance between these is

(228 MHz)
(
1 + 230 nm

671 nm

)
≈ 307 MHz; this is due to the relative difference in Doppler

shift for each wavelength. Fig. 3.9c shows the spectra for both DFS and “V-scheme”

spectroscopy for |23P 〉, identifying the important transitions.

This method allowed us to find the transition wavelengths up to |40P 〉11 and is

good up to the order of MHz for the sideband frequency referenced to the ULE cavity.

More precise schemes are needed to find the line using cold atoms.

3.5.2 MOT spectroscopy

After finding the position of the line, we perform what we call “MOT spectroscopy”.

The first step towards a degenerate quantum gas in our experiment is loading atoms

from a Zeeman slower into a Magneto-Optical Trap (MOT) [92]. For experiments

with UV light, we found that we could use resonant light to deplete our MOT by

blowing away atoms resonantly excited to a |nP 〉 Rydberg state. With this method,

we are able to find the correct transition to a precision of approximately 400 kHz.

This was used to find the |44P 〉 Rydberg state which we could not find using the

“V-scheme” spectroscopy. Both MOT and V-scheme spectroscopy find the Rydberg

lines at zero field. In general, we observed that when coupling with atoms at a high

11Since the dipole matrix element scales inversely with principal quantum number (Table. 2.1),
higher n values have signals which are below the noise level of the spectroscopy scheme.
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Figure 3.10: Precision MOT loss spec-
troscopy for alignment. We blow atoms
out of a MOT right before imaging over
a short pulse after loading. This allows
us to precisely align the UV beam very
close to the position of the atoms. The
MOT is much larger (∼ 1 cm) than the
optical potentials (∼ 100 µm) providing a
much larger target for pre-alignment. In
this figure, the UV beam position corre-
sponds to the small depletion close to the
center of the MOT. The axes are rotated
by −90° with respect to the experimental
x− z plane.

magnetic field in the optical potentials we had to tune the sideband frequencies up

by approximately 12 MHz corresponding to approximately 48 MHz for the 230 nm

quadrupled photons.

Additionally, by changing the length of the pulse and taking advantage of an

imaging system parallel to the UV laser beam we are able to very precisely pre-

align the beam to the position of the atoms in the final trap. A sample image of

an aligned UV beam is shown in Fig. 3.10. Since the MOT is much larger than the

optical potentials it provides a perfect target for precise pre-alignment of tight UV

beam which can have a waist as small as 16 µm. We can also coarsely tune the focus

position of the last lens in Fig. 3.8 by paying attention at the size of the hole made

by the UV beam on the MOT.

Precise alignment procedure

After pre-aligning the beam using the MOT loss spectroscopy (Fig. 3.10) we fine align

the beam in two different ways. The first method is to keep doing resonant blowing

of increasingly smaller pulses and intensities using ND filters. We could repeat this at

the different stages of the experimental sequence [92]. Finally aligning to the atoms
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in a 2D optical lattice potential. This procedure worked well enough for the 2D Ising

experiments (Ch. 4) which had a large waist of approximately 32 µm.

However, since the Rayleigh range depends quadratically on the waist, once we

shrunk our beam for the Rydberg dressing experiments aligning using loss became

much more difficult (w = 16 µm and zR = 3.5 mm). We figured out that by doing

Ramsey interferometry (Sec. 3.8) we could very clearly observe spatial differences on

the single-particle light-shift. Fig. 6.3b(ii) shows for example how the cloud forms

“ripples” corresponding to the tight waist of the UV beam along the perpendicular

direction. We used this clear visual pattern to align the beam exactly to the center

of our cloud with very high precision. This method is so effective that it also allowed

us to precisely tune the direction of incidence of the UV beam with a lattice direction

to within 1° precision. We could also fine tune the focus of the beam to the cloud by

seeing the Rayleigh range effect on the direction parallel to the beam until it was as

flat as shown in Fig. 6.3b.

3.6 Laser characterization with direct excitation

While the measurements of the “V-scheme” and “MOT” spectroscopy let us find the

Rydberg transitions to a precision of a < 1 MHz, for the experiment we need much

more precise calibration of the resonances. This will help us know the detuning ∆

of the laser from the transition. Unlike in the spectroscopy cell, in our experiment,

the 6Li atoms are cold, trapped in an optical potential, and at a magnetic field of

595 G perpendicular to our 2D lattice. These will lead to Zeeman (Eq. 3.1 and single-

particle light-shifts (δAC) of the transition which would move the resonance by a few

MHz. Furthermore, the experimental protocols require the precise knowledge to of

the Rabi coupling Ω of the laser from the ground-state atoms to the Rydberg state.
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Figure 3.11: Rydberg spectroscopy by
blowing cold atoms at resonance. We
perform spectroscopy of the |2S〉 → |nP 〉
Rydberg state transitions of 6Li by res-
onantly blowing cold atoms in the op-
tical lattice. Choosing the length and
strength of the UV pulse we can mini-
mize Fourier and Power broadening effects.
Also by blowing on a “sparse” system
we achieve roughly “single-atom” measure-
ments. This particular scan was of the
|1〉 → |31P 〉 transition in a shallow lat-
tice of ∼6.2ER depth corresponding to the
first point of Fig. 3.12.

First, we found the resonance by blowing away atoms with UV pulses that were

much longer than the lifetime of the Rydberg state which is on the order of tens of µs.

Here we look at the loss of atoms when the laser is tuned resonantly to the transition

between the ground-state and the Rydberg state. By decreasing the UV power with

ND filters and using long blowing pulses (ms) we were able to decrease the power

and Fourier broadening of the peak. By varying the density of the cloud on which

we perform this blowing spectroscopy, we can observe broadening due to interactions

between neighboring Rydberg atoms or direct excitation of pair-states. To avoid such

broadening, we mostly characterized our laser in the very sparse regime where atoms

were on average many lattice sites apart from each other. This allows us to treat

the measurements as averaging multiple “single-atoms” at a time. Fig. 3.11 shows

a sample scan for the |31P 〉 transition at ∼592 G and low lattice depth and sparse

loading. We are able to experimentally measure a combined laser/Rydberg linewidth

of ∼100 kHz.

Using this very simple technique we performed a lot of characterization about

the behavior of the resonance of 6Li |nP 〉 Rydberg states with various parameters of

our experiment. By tuning the cavity sideband frequency using a GPIB controlled
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function generator (HP 8648A) we were able to take many different scans of resonant

blowing ground state atoms while maintaining the laser locked. It is important to

repeat that due to the quadrupling nature of our laser, all differential frequencies

on the sidebands correspond to a quarter of the real energy differences on the UV

photons (~∆ν = ∆E/4).

3.6.1 Resonance vs. lattice depth

A very strong concern we had before starting this experiment was what effect would

an optical lattice generated using 1064 nm light would have on the Rydberg lines. To

first order, we knew that the polarizabilities of the ground-state and |nP 〉 Rydberg

states had opposite sign. This means that the Rydberg atoms would be anti-trapped

by the optical lattice in the position where the ground states are trapped. Further-

more, in Fig. 2.1 we show that the Rydberg atom electronic wavefunction has a radius

〈r̂〉 ∼ 50 nm from the core. For these distances, the optical lattice already has ∼5 %

variation in its power and can couple directly to the valence electron leading to higher

order corrections to the model potential of Eq. 2.4. Additionally, the ground-state

atoms have a wavefunction spread of ∼100 nm (Sec. 3.3.2). All of these consider-

ations would make for an increasingly difficult calculation with possibly non-trivial

behaviors. Instead, we opted to experimentally study the effects of the lattice depth

(power) on the resonance. Fig. 3.12 shows a summary of this study done for the

|1〉 → |31P 〉 transition in sparse systems.

What we find is that the dependence of the Rydberg state transition is roughly lin-

ear with lattice depth. The slope of this linear dependence (Fig. 3.12a) is ∆ν/∆Vlatt =

10.0(7) kHz/ER. If we take into account the quadrupling of the light and the known

ER = h14.66 kHz we get a dependence ∆E|31P 〉/∆Vlatt = 2.7(2). Furthermore, we

observe a clear effect on the measured HWHM of the lorentzian fits (Fig. 3.12b). The

effect seems to be that lattice depth broadens the transition meaning that low lattice
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Figure 3.12: Effect of lattice depth
on the Rydberg transition. We study
the dependence of the |1〉 → |31P 〉 tran-
sition with lattice depth for sparse sys-
tems. We find a linear behavior with
slope ∆ν/∆Vlatt = 10.0(7) kHz/ER. This
corresponds to a ∆E|32P 〉/∆Vlatt = 2.7(2)
dependence of the transition resonance
with lattice depth. The fitted HWHM
of the lorentzian also shows a behavior
with lattice depth where the depth effec-
tively broadens the line. The first point in
both plots corresponds to the fit shown in
Fig. 3.11.

depths are possibly best. This is good for Rydberg dressing experiments with itiner-

ant systems which require low lattice depths with strong tunneling. We repeated less

careful studies for other |nP 〉 states finding the same slope within errorbars and the

same qualitative behavior of the HWHM.

3.6.2 Resonance vs. magnetic field

A second important consideration is the effect of strong magnetic fields on the transi-

tion. From Sec. 3.1.1 we know that most states disperse linearly according to Eq. 3.1.

Furthermore, in our particular scheme using linear polarization, we know that the

|1− 3〉 ground states move with the same slope as the |2∗〉 Rydberg state (Fig. 3.1).

However, just like with lattice depth there are higher order corrections to this simple

picture. |1〉 is not a pure state and from the Breit-Rabi formula we expect ∼5 MHz

non-linearity between 300 − 600G. Furthermore, the magnetic field can have a non-

trivial effect on the polarizabilities as α0 ∝ (En′S,n′D − EnP )−1. From various mea-
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surements, we observe that the magnetic field has a roughly linear effect on the

|2S〉 → |nP 〉 transition with slope ∆ν/∆B ∼ 0.03 MHz/G with no strong difference

on the particular hyperfine ground-state used.

Given how important it was to know ∆ in our experiments, we would perform

a resonance scan every morning or whenever we changed any parameters in order

to be able to keep ∆ constant throughout. We found that all lines were stable

during any given day and in general we observed no day-to-day drifts unless the

experiment temperature changed drastically. Even then, the line would not move by

more than 1 MHz. Even with all the complicated effects that these parameters can

have on the Rydberg landscape, we always observed roughly the expected behavior

from calculations that only take into account a magnetic field for purposes of Rydberg

dressing.

3.6.3 Magnetic dispersion of |nP 〉 Rydberg states

As a sanity check, we decided to directly measure the magnetic dispersion of Eq. 3.1.

To do this, we used a waveplate to change the polarization of the UV light such

that it had a strong σ− component at the atoms. This allowed us to measure the

cavity sideband frequencies ν for both the |1〉 → |2∗〉 and |1〉 → |1∗〉 transitions

of the |31P 〉 Rydberg state at three different magnetic fields. Fig. 3.13 shows the

extracted energy differences between the measured resonances with a linear fit. We

extract a slope ∆E/h∆B = 1.30(3) MHz/G which is very close to the expected Bohr

magneton µB/h = 1.4 MHz/G. It is unclear why the slope is not exactly what we

expect. However as explained in the previous subsections, it is possible that the

magnetic field affects the single-particle light-shift felt by the Rydberg states in the

optical potential. Anyways, the measured slope is close enough to conclude that we

roughly have a good understanding of the Rydberg landscape in our experiment. This

particular measurement was not repeated at different principal quantum numbers but
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Figure 3.13: Magnetic dispersion of
|31P 〉 Rydberg states. Energy differ-
ence measured between the |1〉 → |2∗〉
and |1〉 → |1∗〉 transitions of the |31P 〉
Rydberg state. We fit a line with slope
∆E/h∆B = 1.30(3) MHz/G close to the
expected Bohr magneton µB.

we did not have any indication that it should have a strong effect given that we observe

the same effect of the field on the |2S〉 → |2∗〉 transitions for different n.

3.6.4 Observation of anomalous “sharp” peaks near reso-

nance

For particular transitions and fields, we observed anomalous resonances that we were

not able to match to any particular transition. These resonances where often very

strong and “sharp” leading to full loss of the system and often accompanied of side-

bands which we attribute to recoil from the lattice. Two-photon transitions do not

make sense unless we are fully ionizing the 6Li atoms. Other options for explanations

of these are that they are “forbidden” transitions. In any case, we avoided using

schemes where a resonance was observed in order to avoid non-trivial behaviors. For

example, Fig. 3.14 shows one of these resonances for the |3〉 → |23P 〉 transition at

∼595 G. In this particular instance, we decided to change to using the |1〉 hyperfine

ground-state which did not show any anomalous behavior and used that scheme to re-

alize a 2D transverse Ising system (Ch. 6). In that first experiment, we did not explore

the effect of low lattice depths (Sec. 3.6.1), as such all observed lines were broadened

(Fig. 3.12). Therefore, initially we extracted the Γ ≤ 100 kHz laser linewidth from

these anomalous resonances (Fig. 3.14). We allowed ourselves to do this since any

optical transition has to be limited by the laser linewidth.
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Figure 3.14: Observed anomalous res-
onance observed during spectroscopy
scans. We observe anomalous resonances
in the |3〉 → |23P 〉 transition at ∼595 G.
The resonance has clear symmetric side-
bands which are roughly in the order of
the expected lattice recoil. The linewidth
of this line gives us a Γ ≤ 100 kHz upper
bound on the laser linewidth.

3.6.5 Direct measurement of Rabi frequency

Once the Rydberg resonance position was identified by blowing away the atoms,

we now performed very short UV pulses with variable length to directly measure

the Rabi frequency Ω of the transition. Unlike the blowing experiment were atoms

are simply “pushed” out of the trap in a very long pulse, here we are coherently

exciting the atoms to the Rydberg state. At the end of the pulse, the atoms have

certain probabilities of being in the excited (Rydberg) state or the ground-state. We

image only the ground-state distribution after removing the Rydberg atoms by rapidly

increasing the lattice depth to a value suited for fluorescence imaging, leading to rapid

photo-ionization or expulsion of the anti-trapped Rydberg atoms. We measure the

efficiency to remove Rydberg atoms to be 90(3) %. Fig. 3.15a shows experimental

results of a Rabi oscillation for |23P 〉; we attribute the decay of oscillations to the

intensity stability (≈10 %) of the laser rather than to short T1 decoherence time which

should be comparable to the Rydberg state lifetime of ≈20µs. The maximum Rabi

frequency of the |23P 〉 transition we could get with the original laser setup (Fig. 3.8a)

was Ωmax = h× 5.4(1) MHz.
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As we know that the UV beam is not homogeneous at the atoms but rather it has

a Gaussian profile, it is important to measure how much of a variation it has over the

region of interest of our experiments. Taking advantage of the single-site resolution of

our Fermion microscope, we can measure the small variations of the Rabi frequency

at different points of the cloud over one of the lattice axes. In this way, we were able

to experimentally measure the beam waist at the atoms and the spatial variation of

Ω over the region of interest to be 35 µm (Fig. 3.15b).

This method of calculating Ω was useful for the initial Ising experiments (Ch. 4).

However, for Rydberg dressing we wanted to be much more precise and developed

an indirect way of measuring Ω using Ramsey interferometry which is explained in

detail in Sec. 3.8.

Probing coherence

Since we can directly observe the Rabi oscillations of the resonant |g〉 → |r〉 system,

we can probe the coherence of the system by doing a spin-echo Ramsey sequence of

UV pulses. The pulse sequence is π/2 − τ − π − τ − π/2 pulse where τ is a delay

time in between UV light pulses which put the initially ground-state atoms into a

superposition with the Rydberg state. The ground-state fraction is measured at the

end of the sequence (Fig. 3.15c). In the case of a perfectly coherent system, the pulse

sequence always reduces to a 2π pulse and all atoms should return to their ground-

state. However, even for τ = 0, the measured ground-state fraction is reduced to

∼ 0.8 which we attribute to shot-to-shot laser intensity fluctuations. This reduced

fraction is maintained for delay times of up to 2τ = 1 µs with no obvious decay trend

indicating that there is no loss of the quantum state coherence over the pulse lengths

studied in the experiments of Ch. 4.
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Figure 3.15: Rabi frequency and coherence measurements for the resonant
|2S〉 → |23P 〉 transition. (a) “Single atom” Rabi Oscillation of a sparse cloud. (b)
Rabi Frequency Gaussian profile over the atoms. (c) Measurement of the ground-
state fraction after a spin-echo pulse sequence, indicating no loss of coherence over
≤1 µs.

3.7 Lifetime characterization of Rydberg dressed

atoms

In Sec. 2.8 we explained how by off-resonantly coupling ground-state atoms with a

Rydberg state we can put them in a superposition state where they have a very small

admixture β = Ω
2∆

of the Rydberg state. This technique applied to 6Li leads to

the possibility of engineering long-range itinerant systems such as the one studied in

Ch. 6. In our experiment, we are able to study condensed matter systems where the

motional timescales are τtunn < 1 ms (t ≥ 2π × 1 kHz) thanks to the light mass of

6Li. For the accessible Rydberg states using our UV laser, the bare Rydberg lifetimes

are of the order of tens of µs (Fig. 2.2a). Given the power of our laser and choosing

an appropriate detuning ∆ from resonance we would theoretically expect Rydberg

dressed lifetimes τdr = β−2τ much larger than the tunneling time τtunn.

However, in practice this is not the case. Previous realizations of Rydberg dress-

ing using Rb and Cs atoms described in Refs. [71–75] have reported much shorter
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lifetimes than expected from the simple picture of Sec. 2.8. The main understanding

of what is limiting these experiments is the so-called “black-body avalanche” effect.

This is a global loss mechanism where a single dressed atom decays into a nearby Ry-

dberg state via the exchange of a photon with the black-body radiation surrounding

the system. The formed impurity is fully collapsed into a Rydberg state leading to

resonant pair-state excitations at a facilitation radius |C3/∆|1/3 under the UV laser

light-field broadening the line and destroying the system. Recently, experiments using

Rb in optical tweezers have been able to directly study this loss mechanism finding

good agreement with this resonant facilitation radius picture [107].

In our experiment using 6Li we have not observed exactly the same effect. The

observed lifetimes are lower than expected from the simple dressing picture. But

the scaling of the avalanche loss mechanism has a characteristic scaling with atom

number (τeff ∝ N−1 [62]) which we do not observe (Figs. 3.16 and 6.5). One possible

explanation for this difference is that given the light mass of 6Li, the energy gained

by the impurity due to a photon recoil or the strong dipole-dipole forces is enough

to “kick” it out of the system before the “avalanche” fully onsets. We do not have

a clean theoretical framework for the non-trivial decay mechanisms that limit our

system. However, in this section we will detail all of the characterization we did to

understand the achieved Rydberg dressed lifetimes and to choose suitable parameters

were we can realize a strongly-interacting itinerant system (Ch. 6).

3.7.1 Effect of geometry

Early in our characterization, we decided to work with the |31P 〉 Rydberg state.

From the expected scalings of Table. 2.4 we expected optimal control of long lived

Rydberg dressed atoms with strong nearest-neighbor interactions. Very quickly we

realized that similar to previous experiments with Rb and Cs the achieved lifetimes

were much shorter than expected and dependent on atom number. Following the

72



0

200

400

600

800

0 30 60 90 120

Parallel Rectangle

Li
fe

tim
e 

(μ
s)

 Atom Number
0 50 100

Disk

 Atom Number
0 100 200 300

 Atom Number

Perpendicular Rectangle

Figure 3.16: Effect of geometry on Rydberg dressed lifetimes. Initial atom
number decay of systems coupled to the |40P 〉 Rydberg state. We observe that the
geometry of the system has a very strong effect on the achieved lifetimes. Particularly,
we observe that increasing the atom number of thin rectangles aligned with the UV
dressing beam does not have any effect on the lifetime. Parameters: Ω = 2π ×
5.6(1) MHz, ∆ = 2π × 40 MHz, and B = 592(1) G.

expected scalings, we decided to study couplings to |40P 〉 hoping we would achieve

better coherence times. Here we realized something interesting. We could prepare

thin rectangular 2D systems along the UV dressing beam and observe no change in

the lifetime with varying atom number. The effect was different for other geometries

and the measurements are summarized in Fig. 3.16.

A possible explanation is that in 6Li we are avoiding the facilitation radii even in

2D systems similar to what was achieved on small 1D systems of Rb [90]. The UV

dressing laser has a very tight waist and it is conceivable that the differential light-

shifts in the perpendicular direction lead to resonances. In the case of the different

configuration of Fig. 3.16, light-shift assisted perpendicular resonances appear for

the “perpendicular rectangle” geometry and more damaging diagonal resonances can

further plague the “disk” geometries. This measurement was repeated for |31P 〉

(Fig. 6.5a) and less thoroughly for |28P 〉 finding that the width of the system could
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increase for lower principal quantum numbers without change in the atom number

independence effect.

For all following characterization we limit our studies to systems whose width in

the direction perpendicular to the UV dressing beam is short enough to keep us in

this limit where atom number has no measurable effect on the decay.

3.7.2 Density-dependent lifetimes

When we started studying the lifetime of Rydberg dressed many body systems, we

noticed that the observed atom number decay could not be understood by a single

exponential model N(t) = N0e
−t/τ . What we observed was a time-dependent lifetime

τ(t) where the decay rate would “slow-down” as we lost more and more atoms in

the system. We came to the understanding that the system had a density-dependent

lifetime and studied the decay by fitting single exponential models to “bins” of atoms

in a rolling manner. This method allowed us to extract the measured lifetimes as a

factor of the density for varying dressing parameters ∆, Ω, and B. Fig. 3.17 shows

a sample of this analysis method for a thin rectangular system coupled to the |31P 〉

Rydberg state. Same as the data of Fig. 6.4, we observe that as the system loses more

atoms and becomes sparser we recover the expected τdr of the simple dressing model.

It is important to note that in order to arrive at the conclusion of a density-

dependent lifetime we performed many experiments where the size of the system

and initial atom number was varied for the same dressing parameters. We observe

matching results for all this variations leading to the conclusion that density (not atom

number) is the most important factor for our observed decay. This is in sharp contrast

with the black-body avalanche picture previously discussed in literature [62, 107].
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Figure 3.17: Density-dependent life-
times of Rydberg dressed systems.
Observed atom decay of 6Li ground-state
atoms dressed with the |31P 〉 Rydberg
state. We initialize the system in a long
and thin rectangular configuration along
the UV laser beam direction. The observed
decay cannot be explained by a single ex-
ponential so we resort to fitting exponen-
tials to bins of 6 data points. (inset) Ex-
tracted lifetimes τ as a function of density
n. Grey dotted-line is expected lifetime
τdr. Parameters: Ω = 2π × 6.9(1) MHz,
∆ = 2π × 60 MHz, and B = 592(1) G.

Lifetime vs. ∆

The simple Rydberg dressed lifetime has a characteristic scaling with detuning ∆ of

τdr = β−2τ ∝ ∆2. We are able to observe this expected scaling for single-exponential

model fits to systems initialized in the very sparse limit. However, for dense systems

we observe a clearly different scaling. In Fig. 3.18 we show the measured lifetime

scalings for sparse and dense systems along with fits to power laws. The expected

scaling is observed for the sparse system which should correspond to the single-particle

limit. Moreover, we are able to extract a bare Rydberg lifetime of τ = 33(5) µs which

roughly agrees with the expected τRyd = 38.7 µs from Eq. 2.13. For the case of the

rapid initial decay of dense systems we observe a steeper scaling fitting a power law

of α = 3.5(2). If we limit the fit to the larger detunings where the simple Rydberg-

dressing picture (β2 � 1) can be assumed, we are able to fit a τdr ∝ ∆3 model within

errorbars.

3.7.3 Effect of magnetic field

Being one of the biggest “knobs” in our experiment and a key difference from previous

experimental realizations, we performed a lot of experiments studying the effect of
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Figure 3.18: Dressed lifetime vs. ∆.
Measured lifetimes of a long strip system
of ground-state atoms coupled to the |31P 〉
Rydberg state. (green) If the system is
initialized with a sparse density (single-
particle limit) we observe the expected
τdr ∝ ∆2 scaling. From the fit we extract
τ = 33(5) µs as the bare Rydberg lifetime.
(orange) If the system is initialized close
to full density and we extract just the ini-
tial decay rate we observe a steeper scal-
ing than expected. By fitting to a power
law (τdr ∝ ∆α) we extract α = 3.5(2).
Parameters: Ω = 2π × 7.7(1) MHz and
B = 592(1) G.

the magnetic field on the atom number decay. In general, we did not observe any

clear effect as long as we took the care to keep ∆ the same given the observed shifts

in the resonance detailed in Sec. 3.6.2. There was however a study where we saw a

clear difference between the atom number decay at very high fields for atoms coupled

to |28P 〉. Fig. 3.19 shows the atom number decay for 4 very different large magnetic

fields. What we observe is not a gradual effect, but rather a sharp change of the

profile at some critical field between 660 G and 720 G. At |28P 〉 for typical fields

∼592 G we observe longer lifetimes at high densities (Fig. 6.4). But at higher fields,

we observe that the decay profile drastically changes and more closely resembles the

data measured for |31P 〉 (Fig. 3.17) and other higher principal quantum numbers.

As discussed in Sec. 3.2.2 and shown in Fig. 3.4, the magnetic field has a strong

effect on the “jungle” of extra pair-state lines close to our target state. It is possible,

that above a certain field one of these lines with non-zero overlap with the target

state appears. This could imply that direct resonant excitation to nearby pair states,

and not black-body induced decay, is what is limiting the lifetimes in our experiment.
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Figure 3.19: Dressed lifetime vs. B
field. Observed atom number decay of
square ground-state systems coupled to the
|28P 〉 Rydberg state. Each color corre-
sponds to a different magnetic field B. We
do not observe a clear dependence of the
decay with magnetic field. However, for
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cays much faster similar to what is ob-
served in higher |nP 〉 Rydberg dressed sys-
tems (Fig. 3.17). Parameters: Ω = 2π ×
9.5(1) MHz and ∆ = 2π × 40 MHz.

3.7.4 Effect of optical potentials

Our 2D optical trap is comprised of two different lattice potentials: a red-detuned

lattice in the x−y plane made using 1064 nm light and a blue-detuned vertical lattice

in the z direction made using 532 nm light to provide tight confinement and achieve

the 2D regime [92, 93]. We studied the effect of both of these potentials on the

lifetime of the Rydberg dressed atoms and found no effects when keeping ∆ constant

by accounting for the light-shift due to the potentials (Sec. 3.6.1).

This result is particularly interesting for the case of the the optical lattice because

it means that the presence of tunneling does not facilitate extra loss mechanisms.

This was a topic of theoretical debate in Refs. [108, 109] before our recent results

summarized in Ch. 6 and particularly in Fig. 6.4c showed that tunneling does not

affect the lifetime in our system.

3.7.5 Effect of hyperfine ground-state

In Sec. 3.1.1 we described the properties of the hyperfine ground-states at high fields.

The usual groud-states we use in our experiment are |1〉 and |3〉 of which only the

former is pure at all magnetic fields [96]. In our experiment we can initialize the
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system in either of them by first resonantly blowing away the other state. When

comparing schemes that use each of these two initial states, and taking into account

the different position of the resonance, we did not find any difference in their measured

lifetimes. This points towards our conjecture that Rydberg states that differ only in

they mI quantum number can be treated the same. However, as already explained in

Sec. 3.1.1, out of an abundance of caution we decided to start using state |3〉, which

is pure at all fields, for the itinerant experiments shown in Ch. 6.

3.7.6 Effect of principal quantum number

Theoretically, the Rydberg-dressed lifetimes have a characteristic scaling with prin-

cipal quantum number as shown in Table. 2.4. This scaling depends on whether we

are limited by spontaneous emission or black-body induced decay. It also depends

on which dressing parameters we decide to keep constant. Even so, this scaling is

always positive meaning that we would expect the dressing lifetimes to improve with

increasing principal quantum number of the coupled |nP 〉 Rydberg state.

Experimentally, we found the opposite behavior. Initially we started using the

|31P 〉 Rydberg state finding too low lifetimes compared to the expected dressed life-

times τdr. We then used larger |nP 〉 states finding an even worse fraction of the

expected lifetimes. It was not until we tried |28P 〉 that we achieve a reasonable frac-

tion of ∼ 1/3τdr for half-filled 2D systems of ≤ 50 atoms. This allowed us to study a

parameter space with sufficient coherence to observe a clear effect of interactions on

the relaxation dynamics of charge-density-waves [14].

While this experimental characterization was under way, we still lacked the full

understanding of our high field dressing scheme (Sec. 3.1) and the possible effects

that nearby pair-potentials could have (Sec. 3.2). In Figs. 3.3 and 3.4 we can observe

how many more nearby pair potentials approach distances ∼1 alatt as a function of

increasing principal quantum number and magnetic field respectively. This fact and
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the observation of an “onset” of a more rapid decay with high magnetic fields in |28P 〉

makes us believe that the decay mechanism limiting our system is resonant excitation

to nearby pair-states which have non-zero overlap with the target state.

3.8 Rydberg-dressed potential characterization

In order to characterize the full Rydberg-dressed potentials described in Sec. 3.3

we use many-body Ramsey interferometry between the two lowest hyperfine ground-

states of 6Li. The use of this technique to characterize Rydberg-dressed potentials was

originally proposed in Ref. [110] and subsequently implemented for Rb in Ref. [75].

3.8.1 Many-body Ramsey interferometry

Experimentally, we can realize this technique by initializing the system in a spin-

polarized gas of |1〉 atoms on a deep lattice with suppressed tunneling. Next, we

perform Ramsey (π/2 − τ − π/2) and spin-echo (π/2 − τ − π − τ − π/2) sequences

of RF and UV pulses in order to indirectly measure the Rabi frequency and directly

probe the Rydberg dressing long-range interactions respectively. We can achieve this

by looking at density profiles and correlations after blowing away one of the two spin

states.

In the frozen gas regime, we can write down the many-body Hamiltonian over

which the Rydberg-dressed atoms evolve during an UV pulse as a classical Ising

model where the lowest hyperfine states correspond to different spins:

Ĥdr = H0 +
1

2

∑
i

δiσ̂
(i)
z +

1

8

∑
i 6=j

Vijσ̂
(i)
z σ̂

(j)
z (3.7)
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Here, H0 is an energy offset, the second term is a longitudinal field of strength δi

dominated by the single-particle light-shift, and the third term is an effective interac-

tion term with strength Vij. Specific choices of pre-factors will become obvious later

on.

A procedure to exactly calculate the experimental observables of different pulse se-

quences is described in the supplement of Ref. [75] and in Ref. [62]. This calculation re-

lies on correctly writing down the unitary operators corresponding to the evolution of

the spin system under the dressing Hamiltonian of Eq. 3.7 (Ûdr = e−i
∫ τ
0 Ĥdrdt). Using

this unitary time evolution and the operators corresponding to the RF pulses we can

exactly calculate the final expectation values of arbitrary operators of different pulse

sequences in terms of the accumulated phases φi =
∫ τ

0
δi(t)dt and Φij =

∫ τ
0
Vij(t)dt

over the length τ of the dressing pulse.

Ramsey pulse sequence

For a π/2− τ − π/2 pulse sequence, the observable is the expected single-component

density σ̂i↑↑ = |↑〉 〈↑| which can be calculated to be:

〈
σ̂i↑↑
〉

=
1

2
− 1

2
cos(φi)

∏
j 6=i

cos

(
Φij

2

)
(3.8)

This observable depends on both the phases accumulated due to single-particle

light-shifts and interactions. However, by choosing large enough detunings ∆ we can

make it such that the effect of interactions is negligible compared to the light-shift

(Fig. 3.20).
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Spin-echo pulse sequence

For a spin echo π/2 − τ − π − τ − π/2 pulse sequence, the observable is the single-

component density correlation which can be calculated to be:

〈
σ̂i↑↑σ̂

j
↑↑
〉
C

=
1

8

(∏
k 6=i,j

cos Φ
(+)
k,ij +

∏
k 6=i,j

cos Φ
(−)
k,ij

)

− 1

4
cos Φ2

ij

∏
k 6=i,j

cos Φik cos Φjk (3.9)

where Φ
(±)
k,ij = Φik ± Φjk and Φii = 0. This observable depends purely on the phases

accumulated due to interactions and it is our main way to directly probe the long-

range interactions of the system (Fig. 6.3c-d).

3.8.2 Interferometry of 6Li

Having explained the observables of the two pulse sequences, all that is left is to write

down the many-body dressing Hamiltonian of 6Li atoms in the form of Eq. 3.7. As ex-

plained in Sec. 3.3.3, we need to take into account the dressing of both states because

the hyperfine splitting between the two lowest ground-states is only 75.806(3) MHz

and the detunings we use are between 30 MHz and 100 MHz. For our interferometer,

we use hyperfine ground states |1〉 ≡ |↑〉 and |2〉 ≡ |↓〉. The many-body dressing

Hamiltonian is

Ĥdr =
∑
i

(
δ↑i σ̂

(i)
↑↑ + δ↓i σ̂

(i)
↓↓

)
+

1

2

∑
i 6=j

(
V ↑↑ij σ̂

(i)
↑↑ σ̂

(j)
↑↑ + V ↓↓ij σ̂

(i)
↓↓ σ̂

(j)
↓↓

+ V ↑↓ij σ̂
(i)
↑↑ σ̂

(j)
↓↓ + V ↓↑ij σ̂

(i)
↓↓ σ̂

(j)
↑↑

)
, (3.10)
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where δαi is the single-particle light shift for spin α at site i, V αβ
ij is the Rydberg

dressed potential between spins α and β at sites i and j, and V ↑↓ij = V ↓↑ij . Using the

relations σ̂
(i)
↑↑ = 1

2

(
Î + σ̂

(i)
z

)
and σ̂

(i)
↓↓ = 1

2

(
Î− σ̂(i)

z

)
, we can rewrite the Hamiltonian

as an Ising model of the form:

Ĥdr = H0

+
1

2

∑
i

(
δ↑i − δ

↓
i +

1

2

∑
j 6=i

(
V ↑↑ij − V

↓↓
ij

))
σ̂(i)
z

+
1

8

∑
i 6=j

(
V ↑↑ij + V ↓↓ij − 2V ↑↓ij

)
σ̂(i)
z σ̂

(j)
z (3.11)

Ĥdr = H0 +
1

2

∑
i

δ∗i σ̂
(i)
z +

1

8

∑
i 6=j

V ∗ij σ̂
(i)
z σ̂

(j)
z (3.12)

Where δ∗i = δ↑i −δ
↓
i + 1

2

∑
j 6=i

(
V ↑↑ij − V

↓↓
ij

)
and V ∗ij = V ↑↑ij +V ↓↓ij −2V ↑↓ij are the corrected

longitudinal field and interaction terms. We can use these corrected terms to calculate

the accumulated phases and use them on Eqs. 3.8 and 3.9. We can exactly recover

the equations of Ref. [75] if we set every term except δ↑i and V ↑↑ij to 0. This is because

for Rb the hyperfine splitting is much larger (∼5 GHz) and one can safely assume

that only state |1〉 is being dressed.

3.8.3 Ramsey vs. Detuning

One of the initial measurements we did with the interferometry was to study the

scaling of the Ramsey fringe frequency φ with detuning ∆. In figuring out how to

properly model the data we first realized that the dressing of state |2〉 could not

be ignored. Furthermore, there is an extra collective field term in the longitudinal

field of Eq. 3.12. This interaction effect effectively reduces the measured Ramsey

frequencies φ as shown in Fig. 3.20. In the beginning we had the idea of fitting a C6

coefficient based on this scaling. However, we found that the spin-echo pulse sequence
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Figure 3.20: Ramsey frequency vs. De-
tuning. Measured Ramsey frequencies φ
of a π/2 − τ − π/2 pulse for various dif-
ferent detunings ∆ in a gas dressed with
|31P 〉 Rydberg state. We fit a model that
takes into account the collective field due
to the long-range interaction potential. It
is important to take into account these in-
teractions otherwise we do not find good
agreement with theory. The effect is mini-
mal for largest detunings.

was a much better probe of the interactions since it removes all effects due to the

single-particle light-shifts.

3.8.4 Indirectly measuring the Rabi frequency Ω

At large detunings, the collective field term due to the Rydberg-dressed interactions

is negligible. On an almost daily basis, we performed a Ramsey pulse sequence for

∆ ≈ 2π × 100 MHz to indirectly measure the Rabi frequency Ω and align the laser

beam if needed. At this large detuning, the ramsey fringe frequency φ depends only

on the single-particle light-shifts of states |1〉 and |2〉 as φ = δAC(Ω,∆)− δAC(Ω,∆ +

∆0). Here, ∆0 is the hyperfine splitting and δAC is the single-particle light-shift

from Eq. 2.31. Doing a Taylor expansion for Ω2/∆2 � 1 we can solve for the Rabi

frequency and find the following relation:

Ω =

√√√√ 4φ(
1
∆
− 1

∆+∆0

) (3.13)

Using this equation we are able to not only extract the Rabi coupling Ω, but also

we can measure the waist of the Gaussian UV dressing beam by looking at its profile
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over a large could (Fig. 6.3b). This technique is so precise that we used it to fine

align the dressing beam at the atoms to very good precision.

3.8.5 Directly measuring interactions from Spin-Echo inter-

ferometry

In principle, one could also measure density oscillations after a spin-echo pulse se-

quence and directly extract an oscillation frequency equal to the interference of in-

teractions for the lattice distances. However, this would require perfect filling, as

difference in holes from shot-to-shot will inevitably lead to decoherence. Further-

more, as discussed in Sec. 3.7, the lifetime depends heavily on the density and is

minimal at unit filling.

Instead, we have opted to look at the density-density correlations from Eq. 3.9

after very short pulses, similar to what was done in Ref. [75]. This observable is

much less susceptible to imperfect filling, and can be shown to scale quadratically

with the interaction for V (r)τ � 1. In Fig. 6.3c-d we show a comparison between

the measured correlations and theory. We find very good agreement when taking into

account the full Rydberg-dressed potential (Sec. 3.3) and an offset attributed to atom

loss.

In our experiment, we have opted to trust the C6 coefficients extracted from

numerical calculations using the Pair-Interaction package [87]. We did not find any

clear deviations from what we physically observed when taking into account all of the

modeling described throughout this chapter. If in the future we are able to increase

the coherence, further characterization techniques will need to be developed in order

to measure this interaction potential rather than using a priori calculations.
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Chapter 4

Quench dynamics in a 2D

transverse Ising spin system

This chapter presents the work published as

E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. Devakul, D. A. Huse,

P. Schauß, and W. S. Bakr. Probing the quench dynamics of antiferro-

magnetic correlations in a 2D quantum Ising spin system. Phys. Rev. X

8 (2018) [12]

As we were performing the characterization of the UV laser system described in

the previous chapter we realized that it would be possible for our system to simu-

late a two-dimensional transverse Ising spin Hamiltonian with broken Z2 symmetry,

through direct excitation to a Rydberg state whose blockade radius Rb (Sec. 2.7.1) is

on the order of the lattice spacing. Previous work in both optical lattices [111, 112]

and tweezer arrays [88, 113, 114] had focused on larger blockade radii and its effects.

However, this regime makes it hard to study many-body states with a large Rydberg

fraction. In contrast, the regime studied in our work is particularly interesting be-

cause it features a direct quantum phase transition between a paramagnet and an
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antiferromagnet with broken Z2 symmetry. Our work is closely related to studies in

one-dimensional [43, 114] and two-dimensional [50, 115] tweezer arrays.

Using our platform, we explored the dynamics of a two-dimensional quantum Ising

model by coupling a nearly defect-free array of neutral atoms in an optical lattice to

a low-lying Rydberg state [49]. The spin coupling in the model arises due to a van

der Waals interaction between atoms in the Rydberg state. If one atom is in a Ryd-

berg state, the excitation of another atom to a Rydberg state is strongly suppressed

within a blockade radius Rb [82–86]. This is because the interaction between the

Rydberg atoms within this radius is much larger than the laser coupling strength.

While there exists a variety of well-developed theoretical techniques to study the

equilibrium properties of quantum spin systems [116–122], the toolkit for simulating

real-time dynamics of these systems is rather limited and can only capture the evo-

lution accurately for short times, especially for systems in more than one dimension

[116, 123–125]. In this work, we benchmark state-of-the-art numerical techniques to

the results of our quantum simulator and find reasonably good agreement.

4.1 Simulating a quantum Ising model with Ryd-

berg atoms

We realize a quantum Ising spin system with an array of 6Li atoms in an optical lattice

with near unit-occupancy. The lattice is deep enough to suppress tunneling over the

timescale of the experiments. We prepare all the atoms in the same hyperfine ground

state |↓〉. Interactions are introduced by globally coupling the atoms with a single

laser field to a Rydberg state |↑〉. The van der Waals interaction between atoms in the

Rydberg state is isotropic and takes the form Vij = C6/|ri − rj|6. The Hamiltonian
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of the system is given by:

Ĥ = Ω
∑
i

Ŝxi +
∑
i

(Ii −∆)Ŝzi +
∑
i 6=j

Vij
2
Ŝzi Ŝ

z
j (4.1)

Here Ŝαi are the spin 1/2 operators for the ith lattice site and α = x, y, z. The first

two terms of this Hamiltonian describe transverse and longitudinal magnetic fields

that couple to the pseudospin. The Rabi frequency Ω that drives a transition between

the ground and the Rydberg state for an isolated atom determines the transverse

field, while the detuning ∆ of the laser frequency from atomic resonance determines

the longitudinal field (Sec. 2.7). Ii =
∑

j,(i 6=j)
Vij
2

can be taken as a site independent

detuning in a large system as ours. We work with an attractively interacting (Vij < 0)

Rydberg state (|23P 〉). In the absence of the fields, the Hamiltonian’s most excited

state is a classical antiferromagnet, which is the ground state of the Hamiltonian

ˆ̃H = −Ĥ. For Rb = (C6/Ω)1/6 � alatt, the ground state phase diagram of ˆ̃H in Ω/∆

parameter space contains multiple Rydberg crystalline phases with different Rydberg

atom fractions [43, 126–129]. However for Rb ∼ alatt, the regime we study in this

experiment, ˆ̃H can be approximated by a nearest-neighbor Ising Hamiltonian with

coupling J = C6/a
6
latt. A phase diagram for this model is shown in Fig. 4.1a and

has only one ordered phase, the antiferromagnet [130, 131]. The initial state in the

experiment is the paramagnetic ground state of ˆ̃H for positive detuning ∆� J � Ω.

In this work, we quench the system from this initial state to the antiferromagnet

with varying degrees of adiabaticity and study the ensuing dynamics of the spin

correlations.
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Initial preparation Rydberg excitation Detection

Figure 4.1: Realization of a 2D quantum Ising model with Rydberg atoms
in an optical lattice. (a) Ground-state phase diagram of the 2D quantum Ising
model H̃ with nearest neighbor coupling J . This is an approximate phase diagram
of our Rydberg system when the blockade radius is comparable to the lattice spac-
ing. Transverse and longitudinal fields are controlled by the Rabi frequency Ω and
laser detuning ∆, respectively. There is only one ordered phase, the antiferromagnet
(AFM). Outside of this region there is a paramagnetic (PM) phase where the spins
align with the field. (b) Experimental setup consisting of a 2D array of atoms at
the focus of a high-resolution objective, capable of resolving individual sites of the
lattice. Atoms in the ground state (small blue spheres) are directly coupled to the
23P Rydberg state (large red spheres) with 230 nm laser light. (c) Typical atom
configurations at different stages of the experiment. The initial state consists of an
array of atoms in the electronic ground state (blue, left). This state is quenched
into a state with antiferromagnetic correlations (Rydberg atoms in red, center). By
increasing the lattice depth, Rydberg atoms are lost and only the ground state atoms
are imaged (right). (d) Raw fluorescence images of an initial (left) and a post-quench
(right) configuration with strong antiferromagnetic correlations, together with recon-
structed images (each blue pixels depicts a detected atom in the ground state).
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4.2 Experimental realization

We prepare nearly defect-free 2D arrays of atoms by taking advantage of Pauli block-

ing in a highly spin-imbalanced degenerate Fermi gas loaded into a square optical

lattice at a magnetic field of 595 G (for details see [92, 93]). At this strong fields,

the spin mixture consists of the first |1〉 = |2S, 0,−1/2, 1〉 (in |nl,ml,ms,mI〉 basis)

and third |3〉 = |2S, 0,−1/2,−1〉 lowest hyperfine ground states of 6Li, with |1〉 as

the majority. The minority atoms, needed to thermalize the gas while loading into

the lattice, are subsequently removed with a pulse of resonant light. We focus our

analysis on an annular region with outer (inner) radius of 9 (4) sites where the average

occupancy of the remaining state |1〉 atoms, measured from repeated preparations of

the system, is maximal and corresponds to 95.7(4) %.

4.2.1 Laser System for coupling to Rydberg states

We couple the state |1〉 atoms to the |23P, 0,−1/2, 1〉 Rydberg state using single-

photon excitation with a linearly-polarized ultraviolet (UV) laser at 230 nm (Fig. 4.2).

The experiments are performed at a bias magnetic field of 595 G pointing orthogonal

to the 2D layer, allowing us to address a single Rydberg state. Up to 60 mW of UV

light is available from a frequency-quadrupled diode-laser system (Sec. 3.4). The light

is π-polarized and focused to a waist of 35 µm. The intensity and the frequency of

the light can be changed rapidly to control the time dependence of the transverse and

longitudinal fields in the Hamiltonian. The UV laser had an intensity stability better

than 10 %. The linewidth at 230 nm was measured to be ≈ 100 kHz (Fig. 3.6).

4.2.2 Experimental Setup

The atoms are located at the focus of a high resolution objective that can resolve

individual sites of the optical lattice (Fig. 4.1b). The Rydberg dynamics take place
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Δ(t)

Ω(t)
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2S
ml = 0, ms = ½

ml = 0, ms = - ½

ml = -1, ms = - ½
ml =  0, ms = - ½
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ml =  0, ms = ½
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ca. 830 MHz

ca. 1.8 GHz

π

B = 595 G, mI = 1

Figure 4.2: Rydberg Coupling
scheme. Level diagram showing
laser coupling with linear (π) po-
larization from the ground state to
the |23P 〉 Rydberg state at a mag-
netic field of 595 G.

in a lattice of depth 55 ER, where ER = (π~)2/2ma2
latt is the recoil energy and

alatt = 1064 nm/
√

2. We image the distribution of ground state atoms after removing

Rydberg atoms with an efficiency of 90(3) % by increasing the lattice depth to 2500ER,

leading to rapid photo-ionization or expulsion of the anti-trapped Rydberg atoms

(Fig. 4.1c). We obtain site-resolved fluorescence images of the ground state atoms by

collecting ∼ 1000 photons per atom scattered from laser beams in a Raman cooling

configuration [7].

4.2.3 Single atom Rabi oscillations and coherence

We calibrate the transverse and longitudinal fields of the Hamiltonian using sparse

clouds where the average spacing between atoms is much larger than Rb. The location

of the Rydberg resonance (∆ = 0) is determined by finding the laser frequency which

maximizes atom loss during a long exposure to the UV light, since atoms in the

Rydberg state experience an anti-trapping optical potential (Sec. 3.6). The Rabi

frequency Ω is determined by measuring single atom Rabi oscillations (Sec. 3.6.5),

and we attain a maximum Rabi frequency Ωmax = 2π × 5.4(1) MHz (The errorbar
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takes into account shot-to-shot intensity fluctuations). Ω varies 4.9(3) % over the

region of interest due to the Gaussian intensity profile of the UV beam.

To measure the strength of the laser coupling to the Rydberg state, we measure

Rabi oscillations in a sparse cloud where the interactions between the Rydberg atoms

are negligible. A typical single atom Rabi oscillation is shown in Fig. 4.3a. The

decay of the Rabi oscillation is mainly due to shot-to-shot fluctuations of the laser

intensity. In addition we measure the coherence of the atoms in a sparse cloud using

a Ramsey echo sequence: π/2 - τ - π - τ - π/2 pulse, where τ is a delay time. The

ground state fraction is measured at the end of the sequence (Fig. 4.3b). Even for

τ = 0, corresponding to a 2π pulse, the measured ground state fraction is reduced to

∼ 0.8, because of laser intensity fluctuations. However, for a total delay 2τ = 1 µs,

corresponding to 6h/J , we do not observe any decay of the ground state fraction,

indicating that there is no loss of coherence.
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Figure 4.3: Investigation of single-atom coherence. (a) Single atom Rabi oscil-
lation. Fitted 1/e decay of the amplitude is ∼1.5 µs = 9h/J . (b) Measurement of the
ground state fraction after a Ramsey echo sequence, indicating no loss of coherence
over times longer than the quench times used in this work (∼1 µs = 6h/J).
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4.2.4 Movement of the atoms during the quenches

The ground-state atoms in our experiment are trapped in an optical lattice. How-

ever, the Rydberg state is anti-trapped by the lattice. There are also other even

stronger forces that can lead to movement of the atoms, mainly van der Waals

forces between atoms in Rydberg states and photon recoil kicks. From the exper-

imentally fitted value for C6, we estimate Rydberg atoms accelerate toward each

other with a(r) = 6C6

r7m
where a ≈ 3.2× 106 m/s2 for neighboring Rydberg atoms

and a(
√

2alat) ≈ 2.8× 105 m/s2 for next-neighbor Rydberg atoms. This leads to a

displacement of 0.09alatt (0.01alatt) for a typical quench time of 200 ns for nearest

neighbor (next-nearest neighbor) Rydberg atoms. We note that the excitation of two

Rydberg atoms on neighboring sites is largely suppressed due to the blockade. Recoil

and anti-trapping forces lead to much smaller displacements of the atoms. In our cal-

culations, we cannot include the movement of atoms during the quenches due to the

tremendous increase in Hilbert space size. One approach to account for some aspect

of the movement is to model its effect as two-particle decoherence, as discussed in

Sec. 4.4.2.

4.2.5 Theoretical calculation of C6

The C6 coefficient, which determines the strength of the van der Waals interaction,

depends strongly on the principal quantum number. We obtain a theoretical C6/h =

−1.92(6) MHz µm6 = −10.6(3) MHz a6
latt for the |23P, 0,−1/2, 1〉 state at an offset

field of 595 G. The angular dependence of the interaction potential in the P -state is

unimportant in our experiments since the magnetic quantization axis is orthogonal

to the plane of the lattice, leading to an isotropic interaction for atoms in the 2D

plane. For these parameters, ~Ωmax, J � h/τ , where τ ∼ 20 µs is the lifetime of the

Rydberg state [66], leading to negligible decay over the relevant timescales.
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We calculate the value of C6 for the state |23P, 0,−1/2, 1〉 at 595 G with two

different techniques. First we use a perturbation theory calculation in the ml basis

which yields C6/h = −1.915 MHz µm6 (Sec. 2.5.1). As a second approach we use a

pair state ED in the mj basis at 595 G using [87] and perform a basis transformation

to the ml-basis (Table. 3.1). A fit to the potential curve then yields C6. Depending

on the inner cutoff r0 for the fit we obtain values between C6/h = −1.974 MHz µm6

for r0 = 0.7 µm and C6/h = −1.864 MHz µm6 at r0 = 1 µm which leads us to the error

estimate previously mentioned.

4.3 Short “sudden” quenches

As an initial experiment we study dynamics in the Ising system after a sudden quench,

where the transverse field is switched on quickly compared to h/Ω. The system

is initially in a product state, with all spins in |↓〉 (|1〉), and we image the atoms

after an evolution time T . From the images, we extract the spin correlators C(r) =

4
〈
Szi S

z
i+r

〉
c

= 4(
〈
Szi S

z
i+r

〉
− 〈Szi 〉

〈
Szi+r

〉
). The correlators C(0, 0), C(1, 0), C(0, 1) and

C(1, 1) are shown in Fig. 4.4a-d for ΩT/h = π/2 (Ω = h× 4.05(2) MHz) and varying

detuning ∆. The correlator C(0, 0) is linked to the magnetization as C(0, 0) = 1 −

4 〈Szi 〉
2. We observe a change in the sign of the nearest neighbor correlations as the

detuning ∆ is varied.

4.3.1 Comparison to NLCE dynamical calculations

For such short times, the correlations remain short-range and therefore we can com-

pare our results to calculations obtained using a dynamical version [132] of the nu-

merical linked cluster expansion (NLCE) [121, 133]. The dynamics is computed on

clusters of increasing size (the “order” of the expansion) and the results are ex-

pected to converge if the correlation length is smaller than the cluster size. We
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Figure 4.4: Sudden quench dynamics. (a-d) Spin correlations after a sudden
quench with ΩT/h = π/2 (Ω = h× 4.05(2) MHz) at various detunings ∆. The corre-
lators shown are C(0, 0) (a), C(1, 0) (b), C(0, 1) (c), and C(1, 1) (d). For comparison
we show the fits to dynamics computed with NLCE (solid line) and exact diagonal-
ization on a 4 × 4 lattice with open boundary conditions (dashed line). (e-h) Spin
correlations after a longer quench of ΩT/h = 3π/2 (Ω = h × 5.3(1) MHz) at various
detunings.

find good convergence for times ΩT . π. The 11th order NLCE results for the

on-site and nearest-neighbor correlations are fit to the measured correlations after

the quench with two free parameters: the van der Waals interaction coefficient C6

and a scaling factor α corresponding to the Rydberg imaging efficiency. The NLCE

dynamics calculations take into account interactions up to next-nearest neighbors

and experimental imperfections including the finite rise and fall time of Ω and 2.8 %

anisotropy of the lattice spacing [7], which translates to an 18 % anisotropy of the

interactions on the nearest neighbor sites. We also compare the data to exact di-

agonalization results on a 4 × 4 lattice. From these fits, we obtain an experimental

C6/h = −1.1(1) MHz µm6 = −6.0(3) MHz a6
latt and a scaling factor α = 0.89(1),

which agrees with the expected detection efficiency. The fitted value of C6 is about

40% lower than the theoretically calculated C6, which has possible systematic errors
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due to uncertainties in the matrix elements in lithium, in particular at high magnetic

fields, and finite wavefunction size of the atoms on the lattice sites [134].

NLCE dynamics

The numerical linked cluster expansion (NLCE) algorithm used to calculate the dy-

namics in this work is an extension of the NLCE technique for thermodynamic quan-

tities, reviewed in refs. [121, 133]. Our NLCE calculations take into account next-

nearest neighbor (diagonal) interactions, lattice anisotropy, and the finite time for

turning on and off the Rabi frequencies during “sudden” quenches. We discuss some

of the major modifications that are made to the algorithm, assuming the reader’s

familiarity with the standard algorithm.

For systems with the symmetry of the square lattice and only nearest neighbor

interactions, each embedding of a graph on the lattice is dependent only on the topol-

ogy of the graph, which allows for a significant reduction in the number of clusters

that need to be diagonalized. Taking into account next-nearest neighbor interactions

and lattice anisotropy means that this is no longer true, as two topologically identical

graphs may have different graph Hamiltonians. Thus, we break down topologically

identical graphs further into classes of graphs with the same Hamiltonian up to graph

symmetries, each of which we only need to solve once.

For each of these, we then perform a time evolution starting from the initial state

using sparse representations of the Hamiltonian. The initial and final ramp is sim-

ulated by breaking down the overall ramp time into five time steps, and applying

the time evolution between these steps with the appropriate time-averaged Hamil-

tonian. Then, the appropriate correlation functions can be extracted from the final

state. The subgraph subtraction then proceeds as usual, except that each embed-

ding should be treated independently, as the contribution of a graph to a particular

correlator depends on its embedding in the lattice. Finally, we perform an Euler
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resummation starting from the 3rd order to reduce odd-even order fluctuation. Note

that the graphical expansion done here is site-based, rather than link-based.

Finally, we have checked the effect of including beyond-next-nearest neighbor in-

teractions, and the number of time steps, and found that our results are well converged

with respect to them.

Fitting sudden quench dynamics to NLCE results

The correlator dynamics are computed using NLCE for a grid of ∆ and C6 values

at 9th order in the expansion, taking into account the independently calibrated Rabi

frequency Ω = 2π × 4.05 MHz. The correlators C(0, 0), C(1, 0), and C(0, 1) are

simultaneously fit to the results using two fit parameters: C6 and a scaling factor α

corresponding to a Rydberg atom detection efficiency. The scaling factor reduces the

nearest neighbor correlators C(1, 0) and C(0, 1) as α2. Since C(0, 0) = 〈n2〉 − 〈n〉2

and n2 = n since n is either 0 or 1, we obtain C(0, 0) = 〈n〉 − 〈n〉2. This leads to a

corrected correlator C∗(0, 0) = α 〈n〉 − α2 〈n〉2.

Convergence of NLCE dynamics calculations

To go beyond the regime where the dynamics can be calculated with NLCE, we

perform a longer quench with ΩT = 2.97(7)π. The extracted correlators are shown

in Fig. 4.4e-h. In this case, even the next-nearest neighbor correlations exhibit a

zero crossing as a function of detuning, showing that the system is building up longer

range correlations. The different NLCE orders already stop converging at much earlier

times.

To back up the claim that the quench shown in Fig. 4.4e-h is outside of the regime

which exact state-of-the-art numerical methods can study, we show the results of an

NLCE simulation up to ΩT = 3π. Fig. 4.5 shows the time evolution of the C(0, 0)

and C(0, 1) correlators. The fitted C6 values and parameters of Fig. 4.4a-d were
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used. The difference between the solid and dotted lines is the order at which the

Euler resummation is started. The series is converged up to times where both of

these curves coincide. For the time corresponding to the quench studied in Fig. 4.4a-

d (ΩT = 0.5π) it is clear that the series is converged and as such we can use it for

fitting. However, for the quench studied in Fig. 4.4e-h (ΩT = 3π) the series is far

from converged. This points to the strength of platforms such as ours as benchmark

results for numerical methods.
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Figure 4.5: NLCE convergence.
11th-order numerical linked clusted
expansion calculations for a sudden
quench with parameters J = h ×
6 MHz, Ω = 2π × 4.05 MHz, and ∆ =
0. C(0, 0) (blue) and C(0, 1) (red) cor-
relators are shown vs. time. The solid
line is an Euler resummation starting
at the 3rd order while the dotted line
is one starting at the 5th order. The
black dashed lines correspond to the
pulse lengths shown in Fig. 4.4.

4.4 Near-“adiabatic” quenches

To prepare many-body states with longer antiferromagnetic correlations, we investi-

gate a more adiabatic quench scheme [128, 135, 136], illustrated in the inset of Fig. 4.6.

In the following, we use J = h × 6 MHz for all presented units. We start from the

same initial state but use a soft switch on and off of the Rabi frequency and a linear

ramp of the detuning from ∆i = 3.3J to a varying ∆f . During the detuning ramp, the

Rabi frequency is fixed at Ω0 = 0.9(1)J/~. We explore a variety of detuning ramp

rates ∆̇ ranging from 8.9J2/h to 1.6J2/h. For each ∆̇ we measure correlations at

different times in the ramp. Fig. 4.6 shows the buildup of nearest neighbor and next-

nearest neighbor antiferromagnetic correlations as the longitudinal field is ramped at
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different rates. The buildup of antiferromagnetic correlations starts approximately

at the time the detuning ramp crosses ∆ = 0. For the fastest quench rates we see a

correlation buildup before crossing of the resonance which we attribute to strong non-

adiabaticities. For all quench rates studied, we observe that the correlations reach a

maximum at ∆/J ∼ −2, as would be expected in the adiabatic limit from the phase

diagram in Fig. 4.1a. The peak value of the correlations initially increases as the

quench rate is reduced as one might expect for approaching the adiabatic limit, but

then decreases for slower ramps. This is likely due to decoherence starting to play

a role in the slower quenches. Therefore, we have to take decoherence effects into

account for a numerical modeling of the time-dependence of the correlations.

We performed a phenomenological study of the influence of decoherence on the

near-adiabatic ramps by solving the master equation using the Monte Carlo Wave

Function method (MCWF) on a 4 × 4 lattice [137, 138] (Sec. 4.4.2). Single particle

decoherence comes in the form of decay from the Rydberg state (T1) and dephasing

that can be characterized in our system using a Ramsey sequence in a sparse cloud

(T2). In Fig. 4.6, we show MCWF simulations with values of T1 = 20 µs and T2 =

0.5 µs. We found that the impact of single particle decoherence on the correlations is

too small to reproduce our experimental results. However, motional effects can lead

to many-body decoherence. Mechanisms leading to atomic motion include strong

attractive forces between atoms in the Rydberg state, laser recoil and changes of the

lattice potential experienced by the atoms due to a difference in the polarizability

between the ground and Rydberg states. These motional effects are stronger in our

system compared to previous optical tweezer experiments [43, 114] due to the light

mass of lithium and the relatively small lattice spacing. This motion of the atoms,

estimated in Sec. 4.2.4, leads to decoherence in the spin system by changing the

coupling J . To model this two-particle decoherence, we approximated the movement

of the atoms as “interaction noise” between nearest neighbor pairs. Although the
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Figure 4.6: Time evolution of spin correlations after near-adiabatic quenches
and comparison with phenomenological decoherence models. Experimental
correlations after near-adiabatic quenches (blue circles for C(0, 1) and blue squares
for C(1, 1)) for different quench rates (left to right panel) and varying final detuning
∆f . These are compared with MCWF simulations taking into account different types
of decoherence (lines). We studied T1 type decoherence with T1 = 20 µs (green) and
T2 type decoherence with T2 = 0.5 µs (red). The T1 value is chosen as the lifetime
of the Rydberg state and the T2 value is an aggressive lower bound given by our
Ramsey calibration Additionally, we show the combination of T1 decoherence with
two-particle “interaction noise” for nearest neighbor pairs (yellow). For the latter,
the decoherence rate (ΓJ = 1µs−1) was a free parameter chosen to obtain reasonable
agreement with experimental correlations for all four quenches simultaneously. The
shaded regions are s.e.m. of the simulations. For reference, the calculations without
decoherence are also shown (dashed blue lines). Inset, time dependence of the Rabi
frequency Ω and detuning ∆ used for the near-adiabatic quenches. The time for
switching on and off the laser coupling was fixed to tr = 0.6h/J for all quenches. The
maximum total length of the quench tp varies from 0.3 µs to 0.9 µs depending on the
quench rate.
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motion is expected to be coherent at short times, we make the assumption that

the motion is sufficiently chaotic at long times to allow us to use this decoherence

approximation. We implement the “interaction noise” by adding a time-independent

conditional nearest-neighbor dephasing term with rate ΓJ = 1µs−1 to the Lindblad

master equation. As the “interaction noise” is not constrained by our single-particle

calibrations we use its strength as a single free parameter to fit our data. This

phenomenological simulation allows us to achieve better agreement with our data for

the longer quench rates, suggesting that our main source of decoherence is two- or

many-body in nature.

At the end of the ramps, where significant antiferromagnetic correlations have built

up, we find that we can fit the decay of the correlations with distance to an exponential

(Fig. 4.7a). The fitted correlation lengths range from ξ = 0.74(6)alatt to ξ = 1.9(2)alatt

depending on ∆̇. We compared this data to the results of equilibrium Monte Carlo

calculations at ∆f = −2J and Ω = 0 to check if we can describe the system in terms

of an effective temperature (Sec. 4.4.1). While these calculations also give correlations

that decay exponentially, there is no temperature that reproduces both the strength

and range of the correlations. We find a temperature of kBTξ ≈ 0.51(1)J for matching

the correlation length and kBTnn ≈ 0.82(4)J when matching the nearest-neighbor

correlator for the data shown in Fig. 4.7a. The fact that these two temperatures are

not within error bars leads us to the conclusion that the system is not equilibrated

at the end of the quench.

Another way to characterize the states created by these slow quenches is by ex-

tracting the probabilities for observing a particular spin configuration in a sub-system.

In Fig. 4.7b, we show the probability of observing different spin configurations in 3×3

sub-systems, not correcting for detection fidelities. The two antiferromagnetic states

are the most probable states near the end of the ramp, with an enhancement of a

factor of 16(2) over a uniform distribution in the Hilbert space.

100



-0.04

 0

 0.04

 0.08

 0.12

 0.16

 0.20

 0  1  2  3  4  5  6  7

C
or

re
la

to
r (

-1
)(i+

j) C
(i,

j)

Distance (al)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-0.2  0  0.2  0.4  0.6

P
ro

ba
bi

lit
y

Time (h/J)

 0.06

-3 0 3
i

-3

0

3

j

-3

0

3

j

-3

0

3

j

(a)

(b)

(c)

-3

0

3

j

-0.32 -0.16  0  0.16

C(i,j)

 Δ= 2.2 J2/h
•

Δf (J)

 0

 -0.66

 -1.33

 -2

, ...

Figure 4.7: Characterizing many-body
states during and after a slow quench.
(a) Spatial decay of the correlations after
a sweep with ∆̇ = 2.2J2/h, with an expo-
nential fit that yields a correlation length
ξ = 1.4(1)alatt sites. (b) Time evolution of
the probabilities of observing different con-
figurations in 3 × 3 sub-systems, not cor-
rected for detection efficiencies. The prob-
abilities are shown for the two antiferro-
magnetic states (red), the all-grounds state
(green), one Rydberg atom states (blue),
and all other states (grey). The evolu-
tion is shown during a ramp with ∆̇ =
4.4J2/h. The antiferromagnetic configura-
tions become most probable at the end of
the quench. (c) Full correlation matrices
C(i, j) at different final detunings during
a slow quench with ∆̇ = 2.2J2/h, showing
the growing range of the antiferromagnetic
correlations.

4.4.1 Effective temperature by comparison with classical

Monte Carlo

We compared our data from the near-adiabatic ramps ending at ∆f = −2J with

classical Monte Carlo simulations. At this detuning, the fields approximately vanish

and the Hamiltonian has the form of a classical Ising model, H =
∑

i 6=j
Vij
2
Ŝzi Ŝ

z
j . We

study the equilibrium behavior of the classical model using the Metropolis algorithm

on a 64 × 64 system [139, 140]. In the case of only nearest neighbor interactions,

we extracted the critical temperature kBT ≈ 0.57J which agrees with the known

exact result [141]. Since we have long-range interactions in our system, we added

a next-nearest neighbor interaction term and compared the resulting correlations

and correlation length to our measurements (see Fig. 4.8). Our calculations suggest

that this extended Ising model has a critical temperature of kBT ≈ 0.38J . We

cannot simultaneously match the correlation length and the correlation amplitude
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for any given temperature, leading to the conclusion that our near-adiabatic ramps

do not leave the system in a thermalized state. However, our measured correlation

lengths for different quench rates would correspond to temperatures in the range

kBT ≈ 0.46− 0.72J .
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Figure 4.8: Effective temperature characteristics of an Ising system calcu-
lated with the Metropolis algorithm in a 64× 64 periodic system. (a) Corre-
lation length versus temperature (blue circles with lines to guide the eye). (b) C(0, 1)
(blue circles) and C(1, 1) (red circles) versus temperature. The shaded regions are
bounded by the minimum and maximum values attained in the near-adiabatic ramps.
The dotted lines correspond to the data shown in Fig. 4.6a.

4.4.2 Investigation of phenomenological decoherence models

To investigate if the reduction of the measured correlators after the near-adiabatic

quenches can be explained by single-particle decoherence, we look at phenomeno-

logical models with varying assumptions. All these models are based on exact di-

agonalization (ED) of 4 × 4 systems with periodic boundary conditions. The full

time-dependence of the pulse shape of the near-adiabatic ramps shown in the inset

of Fig. 4.6 is taken into account as well as the measured values of Ω = 0.9(1)J/~
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and ∆i = 3.3J for J/h = 6.0(3) MHz. It is important to note that a 4 × 4 system

still shows finite-size effects which can lead to deviations of the simulation from our

experimental results. However, it is expected that decoherence reduces the finite-size

effects. All simulations shown include the measured scaling factor α.

Shot-to-shot Rabi frequency fluctuations

Here, we assume that the decay of the single-particle Rabi oscillation is purely caused

by Rabi frequency fluctuations from shot to shot, i.e. the Rabi frequency within a

single run of the experiment is assumed to be constant. We simulate this by ED on a

4×4 periodic system at varying Rabi frequency values and average them according to

a Gaussian intensity fluctuation model. We find that the decay of the single particle

Rabi oscillation can be explained by Rabi frequency fluctuations of ≈ 3% (standard

deviation) around the mean (σ ≈ 0.02J in the case of the ramps with Ω = 0.9(1)J/~).

This amount of Rabi frequency fluctuation is consistent with our measurement of pulse

intensity fluctuations. When using this same fluctuation model for the near-adiabatic

quenches we see weak influence on the strength of the correlations (see Fig. 4.9).

We conclude that a model based on shot-to-shot Rabi frequency fluctuations cannot

explain our decay in the many-particle case.

Modeling the decoherence in the time evolution of the near-adiabatic

quenches

In the presence of decoherence, we model our many-body system using a Master

equation formalism. In this approach the equation of motion for the density matrix

is,

d

dt
ρ = −i[Ĥ(t), ρ] +

∑
i

L(ĉi), (4.2)
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Figure 4.9: Effect of shot-to-shot Rabi Frequency fluctuations. (a) Compar-
ison of a classical model with Rabi frequency fluctuations following a normal distri-
bution of Ω0 = 2π × 4.05 MHz and σΩ = 2π × 0.12 MHz with the normalized data
of Fig. 4.3. (b) Comparison of ED simulations of the near-adiabatic ramps on a
4× 4 periodic system without Rabi frequency fluctuations (solid lines) and including
them (dashed lines) for different quench rates ∆̇ = 8.9J2/h (blue), 4.4J2/h (green),
2.2J2/h (red), and 1.6J2/h (yellow). The effect of the fluctuations on the quenches
is negligible.

where ρ is the density matrix of the full system which evolves coherently with our

Hamiltonian H and the dissipative part L which can be written as

L(ĉi) =
Γ

2
(2ĉiρĉ

†
i − ĉ

†
i ĉiρ− ρĉ

†
i ĉi). (4.3)

Here, ĉi is the single particle quantum jump operator at site i describing the deco-

herence type and Γ is the decay rate determining the strength of the decoherence in

the system.

In order to study the effects of decoherence on the evolution of the system through-

out a quench, it is important to properly choose both the quantum jump operator

ĉi and its weight Γ [137, 138]. Since solving for the full density matrix becomes

intractable even for relatively small systems, we employ the Monte Carlo Wave Func-
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tion (MCWF) method [137, 142, 143]. In this method, it is only required to keep

track of a single wavefunction |φ(t)〉 where the quantum jump operator ĉi acts at

random times with Poisson distribution. The probability per time step of length dt

of the quantum jump occurring is therefore dp = Γdt |〈ei |φ(t)〉|2. By averaging over

many trajectories with different random jumps, it is possible to reconstruct the full

density matrix results. For all of our simulations we used dt = 5 ns which is very short

compared to all energy scales of the system (hdt−1 � J, ~Ω,∆). We also checked for

convergence with respect to variations in dt.

Single-particle decoherence For T1 decoherence (spontaneous emission), one has

to take into account a quantum jump operator ĉi = σ̂−i that decays the single particle

wavefunction |φi〉 into the ground state |gi〉. Since the lifetime of the Rydberg state

is τ ∼ 20 µs, we did a simulation with ΓT1 = 1/τ = 0.05 µs−1. For T2 decoherence

(phase noise), the quantum jump operator ĉi = σ̂zi mixes the phase of the |φi〉 state.

In a previous section, we showed that T2 > 0.5 µs and as such we chose an upper

bound ΓT2 = 1/2T2 = 1 µs−1. Fig. 4.6 shows the ED simulations taking into account

these two decoherence sources. For the fastest quench, it agrees very well with our

measured correlations. However, the agreement is much worse for the slower quenches.

We conclude that single-particle decoherence effects are not the main limitation in

our experiment.

Nearest-neighbor pair decoherence Since we cannot explain our results by

single-particle decoherence effects, we look into the simulation of beyond single par-

ticle effects in the following. We estimated in a previous section that within times

of the order of 100 ns two adjacent Rydberg atoms can attract each other and move

considerable distances thereby changing the effective interaction between them. The

effect of the movement of the atoms can be approximately simulated as “interaction

noise”. Since we found that T1 type decoherence had a significant effect on the simu-
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lations, we kept its dissipative term and implement the “interaction noise” by adding

a second dissipative term to our master equation

∑
〈ij〉

L2(ĉij) =
∑
〈ij〉

ΓJ
2

(2ĉijρĉ
†
ij − ĉ

†
ij ĉijρ− ρĉ

†
ij ĉij). (4.4)

Where ĉij is a quantum jump operator acting on nearest neighbor pair spins. We

choose the quantum jump operator to be ĉij = (σ̂zi − Î) ⊗ (σ̂zj − Î) = |ei〉〈ei| ⊗

|ej〉〈ej| = n̂ei ⊗ n̂ej and the probability with which it is applied in each simulation

step as dp = ΓJdt |〈eiej |φ(t)〉|2. This is analogous to the MCWF method for single

particle decoherence but expanded to a two-body dissipative process. This quantum

jump operator has the same structure as the interaction term in our Hamiltonian Ĥ.

It describes random dephasing between two atoms if both are in the Rydberg state,

which is the effect of “interaction noise”. The full master equation thus looks like

d

dt
ρ = −i[Ĥ(t), ρ] +

∑
i

L(σ̂−i ) +
∑
〈ij〉

L2(n̂ei ⊗ n̂ej). (4.5)

For the T1 dissipative term we used ΓT1 = 0.05 µs−1 as before. Since we do not

have prior knowledge of the value for ΓJ , we vary it to minimize deviations for all

quench rates simultaneously. We find reasonable simultaneous agreement for ΓJ =

1 µs−1. Fig. 4.6 shows the ED simulations using this two-body decoherence approach.

We achieve reasonable quantitative agreement for the longer quenches. The worse

agreement for the shortest quench might be caused by the fact that the movement is

not randomized enough to allow for our simple interaction noise approximation. We

conclude that this two-body decoherence is a good approximation to our experimental

system’s dissipation process.
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Effect on short “sudden” quenches We also implemented the full decoherence

models using MCWF on ED simulations of the sudden quenches shown in Fig. 4.4.

Their effect was negligible as expected given their much shorter pulse times.

4.5 Conclusion

In conclusion, we studied quench dynamics in a 2D Ising model realized with ultracold

atoms coupled to a Rydberg state in an optical lattice. The use of a light fermionic

atom, 6Li, allows us to use Pauli blocking in a relatively large spacing lattice to create

2D atomic arrays with high-filling (∼ 96%), comparable to what is achieved in atom-

by-atom assembler experiments [144, 145]. Combining the large spacing with the use

of a low-lying Rydberg state, we reached the strong correlation regime with Rb ∼ al

and prepared states exhibiting strong short-range antiferromagnetic correlations. We

found good agreement of our data with state-of-the-art numerics for short-time quench

dynamics without taking into account decoherence. In our study of near-adiabatic

quenches we obtained evidence for beyond single-particle decoherence in our system

and observed non-equilibrated final states with longer-range antiferromagnetic corre-

lations. Our new ultracold 6Li Rydberg platform opens many interesting directions

for future work. Rydberg excitation in a Fermi gas may allow the exploration of

impurity dynamics in the presence of Pauli blocking effects [146, 147]. Finally, an-

other direction is the use of Rydberg dressing techniques to realize a dipolar Fermi

gas [36, 37, 75, 88]. Recently, we have implemented this technique to for the first time

realize an itinerant strongly interacting system with long-range correlations [14].

4.5.1 Current State-of-the-art

The use of direct excitation of Rydberg atoms in tweezer arrays has ballooned since

our work was first published [43, 50–53]. As a platform, the “interaction noise”
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decoherence we found limited us from studying the physics of phase transitions [148,

149] and Kibble-Zurek dynamics [150–154]. In fact, very recent work has been able to

explore these physics in 2D tweezer array [115]. Nevertheless, the measurements we

were able to do here speak to the flexibility that Rydberg atoms offer as a platform

for quantum simulation.

Furthermore, the motional “interaction noise” we observed in our experiment

has recently been exactly modeled [155]. While it is stronger in our optical lattice

experiments than in optical tweezer arrays. Being able to fully take it into account

will be necessary in order to achieve high quantum-gate fidelities.
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Chapter 5

Subdiffusive charge transport in a

tilted Hubbard system

This chapter presents the work published as

E. Guardado-Sanchez, A. Morningstar, B. M. Spar, P. T. Brown, D. A.

Huse, and W. S. Bakr. Subdiffusion and heat transport in a tilted two-

dimensional Fermi-Hubbard system. Phys. Rev. X 10, 011042 (2020) [13]

After the previous publication, our group went back to focusing on studying

the Fermi-Hubbard model. In this time, we managed to uncover a previously un-

known bad-metallic phase in the repulsive Fermi-Hubbard model [9] and developed an

ARPES analogue protocol for atoms in optical lattices [11]. After these two projects,

we focused on developing the Rydberg dressing platform described in Ch. 3. However,

we were forced to wait while parts for the intensity stabilization (Sec. 3.4.3) arrived.

It is during this time that we became aware of two theoretical publications claiming

the existence of many-body localization (MBL) in tilted one-dimensional interacting

lattice models due to kinetic constraints [156, 157]. We realized that with the addition

of one laser beam we could study this physics and decided to change directions for

the time being. In fact, we took data that we misinterpreted as a transition to MBL
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in a 2D system. However, with the help of our theory collaborators we realized that

what we were actually observing was very slow dynamics due to subdiffusion. In this

way, this project which is equal parts experimental and theoretical came to be.

5.1 Introduction

While non-interacting particles in a tilted lattice potential have been studied for

almost a century [158–161], the dynamics of strongly tilted and isolated many-body

systems with strong interactions have been relatively unexplored. Characterizing the

late-time behavior of such closed quantum many-body systems away from equilibrium

is a topic of fundamental interest. In a series of recent papers [162–168] it was shown

how irreversible dissipative dynamics can emerge from the unitary evolution of closed

quantum systems. Thus generically we expect the transport of conserved quantities

in such systems to behave hydrodynamically at late times as long as the system

does thermalize. On the experimental front, advances in quantum simulation with

cold atoms and other platforms have allowed for unprecedented control of quantum

many-body systems, and for the controlled study of their dynamics [9, 43, 169–173].

For example, in a recent study diffusive charge transport was observed in an isolated

strongly-interacting 2D Fermi-Hubbard system [9]. Here we follow that work by

observing the dynamics of the same cold-atom Fermi-Hubbard system subject to a

strong external linear potential, or “tilt”, and find a crossover to qualitatively different

subdiffusive behavior at strong tilts.

The dynamics of a weakly tilted 2D Fermi-Hubbard model were studied in

Ref. [174] using semiclassical methods. That work formulated an understanding

of the long-time dynamics in which regions with positive local temperature (lower

energy and lower entropy than infinite temperature) heat up and transport charge

“up” the tilt, and regions with negative local temperature [175, 176] (higher energy
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and lower entropy than infinite temperature) transport charge “down” the tilt as the

system approaches an infinite-temperature equilibrium. This infinite-temperature

equilibrium of many fermions hopping in a single band has a spatially uniform

density and zero expectation value of the hopping energy. In contrast, recent

theoretical works [156, 157] explored the prospect of a transition to a localized

phase in strongly tilted interacting 1D systems. While some evidence for this was

found, it was suggested that this was the result of energetically-imposed local kinetic

constraints that conserve the center of mass (COM)—a phenomenon later referred

to as “Hilbert space fragmentation” [39, 40]. This mechanism for nonergodicity at

strong tilts depends on factors such as the range of interactions, the dimensionality

of the system, and the direction of the tilt. In what follows, we explore a system

which does not exhibit such nonergodicity. Thus this work is most directly related to

Refs. [9, 174] which deal with conductivity, although initial motivation for this study

was derived from Refs. [156, 157] which deal with fragmentation, and investigating

any nonergodic aspects of tilted systems is an interesting avenue for future work.

In this work we study the effect of an external tilt on the late-time high-

temperature emergent hydrodynamics of a 2D cold-atom system. This is done by

varying the tilt strength and observing the relaxation of prepared initial density

waves of various wavelengths λ. We observe a crossover from a diffusive regime

at weak tilts, where the relaxation time τ scales like τ ∝ λ2, to a subdiffusive

regime at stronger tilts, where τ ∝ λ4. We then construct a hydrodynamic model

that exhibits the same universal crossover, and discuss the underlying physics that

leads to the subdiffusive transport. Using the hydrodynamic model we extract the

infinite-temperature tilt-dependent thermal diffusivity of this system. We further

verify our understanding of the underlying physics by measuring the local inverse

temperature profile of the system, thus confirming a prediction of our theoretical
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Figure 5.1: Experimental setup and
measurements. (a) An off-centered
beam generates a potential at the atoms
that is approximately linear in x and in-
dependent of y. Blue-detuned light pro-
jected through a spatial light modulator is
used to prepare the initial density waves of
our experiments, with tunable wavelength
in the direction of the tilt and hard walls
a distance of 35 alatt apart in the perpen-
dicular direction. The figure is a schematic
intended to portray the experimental setup
and is not to scale. (b) Spin up (↑) com-
ponent of density vs. time, averaged over
∼ 10 images. The dotted square denotes
the region of interest (ROI) in which our
measurements were taken. (c) Evolution of
the y-averaged density in the ROI of (b) as
a function of x. The data corresponds to
a system with interaction energy U/th =
3.9(1), tilt strength Falatt/th = 0.99(3),
and an initial density modulation of wave-
length λ/alatt = 11.46(3). The density pro-
file is shown at times 0 ms (0 ~/th), 0.5 ms
(2.6 ~/th), and 15 ms (77 ~/th) from top to
bottom.

model that this profile should correspond to local equilibrium and be displaced by a

quarter wavelength relative to the density profile.

5.2 Experimental Setup

Our system is well-described by the tilted Fermi-Hubbard hamiltonian Ĥ = ĤFH −

FN̂f x̂COM where ĤFH is the conventional Fermi-Hubbard Hamiltonian on a square

lattice, F is the tilt strength, N̂f is the total number of fermions, and x̂COM is the x

component of the COM. The repulsive on-site interaction energy is denoted by U , and

the single-particle hopping energy by th. We emphasize that the system is tilted in

only one of the lattice directions, which we denote with x. Because of this alignment,
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transport along the y direction does not couple to the tilt potential. Thus each row

of sites at each x position forms a thermal bath along an equipotential of the tilt.

These local baths allow this closed system to thermalize. This is in contrast to the

1D case for which recent works [156, 157] have suggested the possibility of ergodicity

breaking in strongly tilted systems.

5.2.1 Tilt Potential

We realize our tilted 2D Fermi-Hubbard model by loading a balanced mixture of two

hyperfine ground states of 6Li into an optical lattice [7]. The tilt is generated by an

ALS MOPA laser which outputs ∼ 40 W at a wavelength of 1064 nm1. This laser

is aligned to be off-centered from the atoms and focused to a waist of ∼ 180 µm, as

depicted in Figs. 5.1a and 5.2a. The gradient of the resulting potential is uniform

to within 10% across a region of length 40 alatt (30 µm), where alatt is the spacing of

the optical lattice, and the strength of the potential gradient can be tuned from 0 to

∼ h× 5.5 kHz/alatt . The beam is oriented such that the gradient is aligned with one

of the two principal axes of the square lattice.

Tilt potential calibration

To calibrate the gradient and characterize its homogeneity across the region of in-

terest, we used the SLM to prepare an initial state consisting of three thin stripes

of width ∼ 1 alatt and a separation of ∼ 20 alatt , with their long direction oriented

orthogonal to the tilt direction. Each stripe consists of a spin-polarized gas of the

lowest hyperfine ground state of 6Li.

For weak tilts, we are able to directly measure Bloch oscillations of these non-

interacting particles. We do so by fitting a Gaussian profile to the density profile

1This laser has since been appropriated by the Molecule Lab. However, an alternative laser
system was built to generate tilt potentials at arbitrary angles using the existing IPG Photonics
laser (Fig. 5.2b).
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integrated along the direction perpendicular to the tilt which is used to quantify the

“breathing” oscillation of the width of the stripes. This is similar to what was done

in [177]. From the theory of Bloch oscillations, we expect the width of each stripe

to oscillate with a maximal half-width of A = 4th/F and a period of T = h/Falatt.

Thus, by fitting a sinusoid to the evolution of the width of each stripe, we can extract

the tilt strength at their respective positions. Fig. 5.3a shows an example of such

oscillations.

For stronger tilts, directly measuring the Bloch oscillations becomes challenging

due to their small amplitude. Instead we use a modulation technique analogous to

what was done in [178]. We modulate the lattice potential at frequencies on the order

of the tilt strength. This brings lattice sites that were decoupled due to the tilt into

resonance which results in photon-assisted tunneling. We again measure the width of

the thin stripes versus modulation frequency and observe a broadening of the stripes

at resonance. Fig. 5.3b shows an example of such a measurement.

We corroborated that for the same potential strength at intermediate tilts, the

gradient extracted using the two techniques agrees. In the case of tilt potentials at

arbitrary potentials, analogue protocols were developed where the main difference was

that instead of initializing a profile of three thin stripes, we divide each stripe into 3

squares resulting in a spatial profile of 9 squares in a 3× 3 distribution aligned with

the lattice axes. With the laser system shown in Fig. 5.2b, we are able to generate

tilt strengths of up to F = h× 8.3(1) kHz/alatt at an irrational angle of 32.8(4)◦ from

the lattice axes although these tilt strength seem to still be too small for our system

size in order to observe true Hilbert space fragmentation physics. Instead, we might

have observed some slow down of the heating up to infinite temperatures explored in

this chapter. Rather than continue exploring these two dimensional tilt potentials,

we decided to resume the Rydberg dressing project described in Ch. 6.
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Figure 5.3: Tilt potential calibration. (a) Bloch oscillation method for charac-
terization of tilt strengths. Each graph corresponds to a measurement of the local
gradient at the position of one of the three stripes. The measured tilt strength is
F = h × 1.64(3) kHz/alatt with a maximal difference of 4.6% between stripes. (b)
Lattice modulation method for characterization of tilt strengths. The measured tilt
strength is F = h × 3.19(7) kHz/alatt with a maximal difference of 7.5% between
stripes.

5.2.2 Spatial Light Modulator

A spatial light modulator (SLM) is used to project sinusoidal potentials of tunable

wavelength along the direction of the gradient, and also remove any harmonic con-

finement from trapping potentials in the region of interest, similar to what was done

in [9]. This allows us to prepare initial density modulations of tunable wavelength.

We also add “hard walls” in the direction perpendicular to the gradient in order to

contain the atoms in that direction and keep the average density constant over the

experimental runtime (see Fig. 5.1a).

5.2.3 Experimental parameters

The atoms are adiabatically loaded into the lattice plus SLM potential at zero gradient

(no tilt). The sinusoidal component of the SLM potential is chosen such that the
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resulting atom-density wave varies spatially with 0.0 . 〈n̂i〉 . 1.2 (see Fig. 5.1b-c),

where n̂i = n̂i,↑+ n̂i,↓. We also performed experiments with smaller-amplitude density

waves and found no qualitative difference in our results as shown in Sec. 5.2.4. Once

the initial density wave is prepared we suddenly turn off the sinusoidal component

of the potential created by the SLM, and turn on the tilt potential, thus initiating

the dynamics. We focus on a square region of interest with a size of 35 × 35 lattice

sites and measure only the single spin component 〈n̂i,↑〉 using fluorescence imaging [7]

since in a spin-balanced system 〈n̂i〉 = 2 〈n̂i,↑〉.

We performed all experiments at an optical lattice depth of 7.4(1)ER, where

ER/h = 14.66 kHz is the recoil energy and h is Planck’s constant. This leads to

a hopping rate of th/h = 820(10) Hz. We work at a magnetic field of 595.29(4) G

nearby a Feshbach resonance centered on 690 G. This leads to a scattering length of

472.0(9) a0 , where a0 is a Bohr radius, which translates to an interaction energy of

U/th = 3.9(1) in the Fermi-Hubbard Hamiltonian. We tune the tilt strength F to

values of up to Falatt/th ≈ 6 which allows us to explore tilts well above the crossover

from diffusive to subdiffusive dynamics.

It is of note that we do not reach tilt strengths so strong that it would be accurate

to describe our system over the experimental runtime using an effective Hamiltonian

which exactly conserves the COM. Therefore we emphasize that this work does not

focus on the physics of fracton-like systems with a strictly conserved dipole moment,

nor does it explore the possible nonergodic dynamics in such systems, although these

topics are an interesting direction for future research [39, 40, 46, 156, 157, 179, 180].

However, our tilted system does show an emergent conservation of the COM in the

long wavelength limit where the potential energy of the tilt dominates the conserved

total energy, and we believe this feature to be universal for tilted interacting lattice

systems with energy and charge conservation as long as the particles are restricted to

a limited set of bands.
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Figure 5.4: Test of linear response. Decay of the amplitude of the density
modulation vs. time for two different initial amplitudes of the modulation. Here
λ = 11.46(3)alatt, Falatt/th = 6.1(2) and U/th = 3.9(1). (a) Shows the amplitudes.
(b) Shows the amplitudes normalized to the baseline at t = 0.

5.2.4 Linear response

Our hydrodynamic model assumes linearity in the amplitude of the initial inhomo-

geneities. In this experiment, we worked with relatively large amplitude density

modulations. In a previous study ([9]), we worked with very small amplitude modu-

lations and fit to a linear hydrodynamic model we developed. In the “tilted” system

studied in this work, we are no longer working close to a ground state, and as such,

the strength of the modulation is not expected to be as important.

Fig. 5.4 shows a comparison between the decay of strong and weak density modula-

tions in a tilted potential. We observe that when we normalize the sinusoid amplitude

and look at its decay, there is no measurable difference between the decays within the

errorbars. This justifies working with strong modulations in this work to reduce the

statistical error in the measurements for a fixed number of repetitions.
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5.3 Results

Our experimental protocol consists of preparing initial density waves of various wave-

lengths in a potential with tilt F and imaging the system’s density profile after it

has evolved under its own unitary dynamics for some time t. We analyze our data

by averaging all measurements from a certain wavelength, tilt, and time, and we

also average the density in the direction perpendicular to the tilt. This yields the

averaged density profile along the tilted direction as a function of time, as shown in

Fig. 5.1c. For each wavelength, tilt, and time we fit the density profile to a sinusoid,

n(x, t) = n̄ + A(t) cos (φ(t) + 2πx/λ), after adjusting for any small amount of atom

loss, with the wavelength being fixed by the fit to the initial profile. We extract both

the phase φ and amplitude A of the sinusoidal fit as a function of time, normalizing

the amplitude by its initial value A(0). The main results of this paper are derived

from tracking the decay of the amplitude A(t) with time.

5.3.1 Early-time dynamics

Any change in the phase with time is a result of the distance the center of mass “falls

down” the tilt as the system heats up in the lowest band of the lattice potential. More

precisely, an initial state with energy density corresponding to a finite temperature

in the non-tilted Fermi-Hubbard system will slide down the gradient of the tilted

potential. As this happens the tilt does work ∼ F∆xCOM per particle for a bulk shift

of ∆xCOM, and this work gets converted locally to kinetic and interaction energy in the

system (the th and U terms) [174]. Since the th and U terms can only accommodate

up to an energy of order ∼ th+U per particle before reaching infinite temperature, the

shift of the COM of the system cannot be more than ∼ (th+U)/F . We observe phase

changes during the early-time dynamics that are consistent with this approximate
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Figure 5.6: Time decay of density waves. Fitted normalized relative amplitudes
of the periodic density modulation (circles) vs. time for wavelengths 11.46(3) (green),
15.16(5) (orange), 19.33(7) (purple), and 23.3(2) (pink) in units of alatt. The lines
are exponential fits to the decay at late times after any initial average heating (phase
change). (Insets) Log-log plot of the fitted decay times vs. wavelength (yellow circles)
and a power law fit of the form τ ∝ λα (green line). (a) Dataset for tilt strength
Falatt/th = 0. (b) Dataset for tilt strength Falatt/th = 2.00(3).

bound as shown in Fig. 5.5. We corroborate that the atoms are not excited to higher

bands using a technique described in [11].
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5.3.2 Late-time dynamics

At late times we observe an approximately exponential decay of the density

modulation (see Fig. 5.6). We fit an exponential to these curves to extract

decay times τ as a function of λ and F . This is done at tilts Falatt/th ∈

{0, 0.39(1), 0.99(3), 2.00(3), 3.88(9), 6.1(2)} and for initial density waves with wave-

lengths λ/alatt ∈ {11.46(3), 15.16(5), 19.33(7), 23.3(2)}. We also use λ/alatt = 7.69(3)

for Falatt/th ≈ 6 as the decay time of the longest-wavelength modulation becomes

very large for this tilt. Decay times that we observe vary increasingly with the tilt

strength F , from 1−5 ~/th at zero gradient up to 103−104 ~/th for Falatt/th ≈ 6. At

each value of the tilt strength we fit a power law of the form τ ∝ λα to our measured

decay times. Diffusive relaxation has a characteristic τ ∝ λ2 dependence (α = 2),

while values of α > 2 indicate slower subdiffusive dynamics. Fig. 5.6 shows the full

analysis for two of the values of F . From the extracted exponents α we observe

a crossover from diffusive relaxation at weak tilts, where α ≈ 2, to subdiffusive

behavior with an exponent of α ≈ 4 at stronger tilts. This crossover is shown in

Fig. 5.7 along with the theoretical prediction of our hydrodynamic model.

Our observation of diffusive dynamics at weak tilts is consistent with the analysis

of Ref. [174], and with the diffusive transport observed in previous experiments on the

same system at F = 0 [9], albeit at lower temperatures. The crossover to subdiffusion

with α ≈ 4 at strong tilts was, until now, previously unobserved, and its observation

and explanation is the main result of this work. Below, we construct a hydrodynamic

model of our system to help explain these observations. We also further test our

understanding of the mechanism behind the subdiffusive transport by experimentally

verifying our model’s predictions for the local temperature profile.
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5.4 Hydrodynamic Model

We denote the non-tilt energy density due to th and U terms by e(x, t), and the

number density of fermions by n(x, t). Our system is, on average, uniform along the

y direction, so e and n are assumed to only depend on x and t. n is a conserved

density and so is ε = e− Fxn, the total energy density including the tilt potential.

For nonzero tilt, our system heats up to near infinite temperature within the

lowest band, where the thermodynamic properties are readily calculated using the

high-temperature expansion. There are then three unknown transport coefficients in

the most general formulation of our model: diffusivities for each of the two conserved

densities and a thermopower coefficient which might be significant for this system

since the energy and atom transport are strongly coupled by the tilt. Our data

does not have enough detail to allow us to estimate all three of these transport

parameters. However, in the stronger-tilt regime where τ ∼ λ4, a tilt-dependent

thermal diffusivity is the only transport coefficient that enters in the relaxation, and

thus this one parameter can be determined from our measurements. We therefore

present our hydrodynamic model in this strong-tilt regime in Sec. 5.4.1, and encourage
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interested readers to see the supplemental material of Ref. [13] for a more detailed

presentation of the theory that includes the weaker-tilt diffusive regime.

5.4.1 Simplified Model

Let us first consider the infinite temperature equilibrium that our system thermalizes

to at late times. This is a limit of zero inverse temperature (β → 0) and infinite chem-

ical potential (µ → ∞), with a finite spatially uniform βµ; we call this equilibrium

value β̄µ. This uniform equilibrium has atom number density n̄ = 2eβ̄µ/(1 + eβ̄µ)

per site and zero expectation value of the hopping kinetic energy (the th term in the

Hamiltonian). It is convenient when separating the energy into tilt and nontilt terms

to choose the interaction term at each site to be U(n↑ − (n̄/2))(n↓ − (n̄/2)). This

choice amounts to changing the total energy and potential V (x) by constants, so it

does not change the physics. With this choice, the equilibrium nontilt energy density

vanishes: ē = 0.

The density profile at finite long times has an additional sinusoidal component:

n(x, t) = n̄+ A0e
−t/τ cos kx with k = 2π/λ (choosing the origin so there is no added

phase in the argument of the cosine). In the strong tilt, long time, small k regime we

are considering now, this density profile is at local equilibrium with a time-dependent

and spatially nonuniform inverse temperature β(x, t). We assume the system is also

near global equilibrium, so we work to lowest order in A0 and β. Near position

x, if we have local equilibrium in the tilted potential V (x) = −Fx in this high

temperature limit, the density is given by n(x) = 2eβ(µ+Fx)/(1 + eβ(µ+Fx)). So, in the

long wavelength limit we are considering here, the density gradient is

dn

dx
= Fn

(
1− n

2

)
β(x) . (5.1)
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For positive β the sign of this density gradient is familiar: at equilibrium, the density

increases as one goes to lower potential energy, since the atoms are favored to sit

at lower-energy positions. At negative temperature for fermions in a band, higher-

energy positions are instead favored, so the density gradient is of the opposite sign.

Quantitatively, the product Fβ captures how much a system at inverse temperature

β “notices” the tilt F . Thus indeed we expect that when the system maintains local

equilibrium, dn/dx ∝ Fβ holds to leading order near β = 0. It follows that to leading

order the temperature profile is given by −A0ke
−t/τ sin kx = Fn̄(1 − (n̄/2))β(x, t).

Using this result, along with a high temperature expansion to write e as a function

of β to leading order, we obtain the nontilt energy profile

e(x, t) =
A0

F

(
4t2h + U2 n̄

4

(
1− n̄

2

))
ke−t/τ sin kx (5.2)

at local equilibrium to lowest order in A0 and k. Now that we have determined the

profiles of n and e assuming local equilibrium, next we consider the dynamics and use

energy and number conservation to determine the relaxation time τ . In the regime

we are now considering, the rate-limiting bottleneck is the transport of nontilt energy

(heat) through the system. This limits the rate at which tilt energy can be converted

to heat and dissipated to the rest of the system, and thus the rate at which the whole

system relaxes.

The relaxation of the number density implies, via the continuity equation for atom

number, an atom number current density of

jn(x, t) =
A0

kτ
e−t/τ sin kx . (5.3)

This current density flows locally along the tilt direction, locally converting tilt energy

to nontilt energy. In addition, there is a heat current jh(x, t) = −Dth∇e(x, t) flowing

due to the temperature gradients, whereDth(F ) is a tilt-dependent thermal diffusivity.
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Conservation of energy is then

ė = Dth∇2e+ Fjn , (5.4)

showing the contribution of heat diffusion and the conversion of energy from tilt to

nontilt due to the atom current jn. In the strong tilt regime we are considering,

the two terms on the RHS of Eqn. (5.4) are each much larger in magnitude than

the LHS: the motion of the atoms converts tilt energy to nontilt energy and this is

dissipated by thermal transport, while the amplitude of the inhomogeneities decays

slowly (Dthk
2τ � 1). In this strong tilt regime, the decay rate is

1

τ
=
Dthk

4

F 2

(
4t2h + U2 n̄

4

(
1− n̄

2

))
� Dthk

2 , (5.5)

and the condition for the validity of this regime is

k2
(

4t2h + U2 n̄

4

(
1− n̄

2

))
� F 2 . (5.6)

We use Eqn. (5.5) to extract the infinite-temperature thermal diffusivity Dth(F )

as a function of tilt strength F in the regime consistent with τ ∝ λ4 and plot the

result in Fig. 5.8.

From the validity condition of Eqn. (5.6) we can also estimate the location of the

crossover shown in Fig. 5.7. Plugging in the experimental values of U/th = 4 and

n̄ = 0.6, and any value of k from the experimental range kalatt ∈ [2π/24, 2π/12], we

get the condition that α ≈ 4 when Falatt/th � 1, which is consistent with the data

shown in Fig. 5.7. A more complete model is detailed in the supplemental material of

Ref. [13], and this model is used to derive the superimposed curve of Fig. 5.7 which

agrees quantitatively with our experimental results. This more detailed model also

gives the thermal diffusivity Dth in terms of all of the transport coefficients, including
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Figure 5.8: Thermal diffusivity. Ex-
tracted thermal diffusivity (circles) vs.
gradient. The values were extracted by
doing a fit of our hydrodynamic model to
all wavelengths of each gradient simultane-
ously as shown in Fig. 5.10.

the thermopower. We therefore conclude that our hydrodynamic model captures the

essential physics leading to the main observation of this paper: the crossover from

diffusive to subdiffusive relaxation with τ ∝ λ4 as the tilt becomes strong.

The infinite-temperature thermal diffusivity Dth(F ) that we are able to measure in

this long-wavelength limit is the thermal diffusivity in the presence of a tilt potential

and the absence of a mass current. In this long-wavelength limit (k → 0) the heat

current becomes much larger than the mass current: jh ∼ A0k
2/F � jn ∼ A0k

3/F 2.

In the limit of small tilt, this thermal diffusivity must be of order tha
2
latt/~, with

an order one prefactor that depends on n̄ and U/th. In the large tilt regime where

Falatt � 4th this heat must be conducted by processes that are second-order in the

hopping, with one uphill hop and one downhill hop and the intermediate virtual

state off-shell in energy by Falatt. This produces an effective matrix element ∼

t2h/F for these processes, which should result in Dth ∼ 1/F 2 at large F . But our

results are actually in an intermediate regime of F , where we are able to access this

subdiffusive regime, but we are not fully in the large F regime where one step in the

tilt energy is large compared to the interaction U and the bandwidth 4th for motion

along equipotential rows. The results in Fig. 5.8 seem consistent with matching on
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Figure 5.9: Local inverse temperature. Near infinite temperature, the density
of singles can be used for thermometry. For a tilt strength of Falatt/th = 3.4(1)
(potential is V (x) = −Fx) and periodic modulation of wavelength 7.69(3) alatt, we
measure the average single component density (green) and the density of singles (not
shown) in order to extract the local inverse temperature of the cloud (orange). (a)
The measured average single component density (green circles) and extracted inverse
temperature βth (orange circles) with sinusoid fits (solid lines) after a decay time of
15.1~/th. In the case of the inverse temperature, the dashed line is the predicted
inverse temperature profile from the density fit and local equilibrium (Eqn. 5.1). The
fitted offset of the inverse temperature is β̄th = −0.002(8) in agreement with an
infinite average local temperature. (b) The amplitude of the density (green) and
inverse temperature (orange) modulations vs. time (circles) with exponential decay
fits (solid lines). (inset) Shows the phase difference of the sinusoid fits between the
single component density and the extracted local inverse temperature vs. time (yellow
circles).

to these expected small- and large-F limiting behaviors, but we leave quantitative

theoretical estimation of Dth(F ) for future work.

The picture we have laid out in this section is one where, at strong tilts and long

wavelengths, the system quickly achieves local equilibrium, locking the local inverse

temperature to the density profile (Eqn. (5.1)). As the density profile decays, local

number density currents flow, and by conservation of energy this necessitates the

flow of nontilt energy in the system. It is this flow of nontilt energy that we show

bottlenecks the relaxation in the large F regime, and thus Dth sets the relaxation rate

of the system. This mechanism only relies on the fact that the system does thermalize,
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has a finite maximum kinetic and interaction energy per particle, and obeys energy

and charge conservation. Thus our qualitative conclusions are not specific to the

Fermi-Hubbard system we study but can be considered universal. A prediction of

this understanding is local equilibrium between β(x, t) and n(x, t) summarized in

Eqn. (5.1). We verify this prediction by measuring the single component density and

singlon occupancy profiles in our system and solving for the inverse temperature in the

atomic limit, which is an effective method of thermometry at such high temperatures.

In Fig. 5.9a-b we show both the density and local inverse temperature profiles, the

decay of both of their amplitudes, and the phase difference between them in time

(inset). From this we see that the β(x, t) profile is at local equilibrium near infinite

temperature (β = 0), locked at a quarter wavelength phase shift from the density

profile, and both profiles decay together in time, as predicted by our understanding

of the subdiffusive regime of this system.

5.4.2 Complete hydrodynamic model

A full derivation of the complete hydrodynamic model taking into account the charge

and energy conservation laws of the system is presented in the supplemental material

of Ref. [13]. The derivation works by writing down the currents in term of entropic

“forces” and their Onsager’s reciprocal relations including a crossterm. We can calcu-

late these relations using a high-temperature expansion of the entropy. The resulting

system of equations can be used to find regimes of charge dynamics characteristically

diffusive (∝ k2) and subdiffusive (∝ k4) as a factor of the tilt strength. In the limit

of large F (and/or small k) we find that the slowest decay rate can be written as

Γ− ≈
Dth

F 2

(
snn
see
− s2

ne

s2
ee

)
k4, (5.7)
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where Dth is the thermal diffusivity and sij are the high-temperature expansion terms

of the entropy.

5.4.3 Simultaneous fitting of the model

As explained in the previous sections, there is a fast and a slow exponential decay

solution to our hydrodynamic model. In the strong tilt regime, Eqn. 5.7 shows that

the slow decay depends only on the thermal diffusivity Dth.

We perform a simultaneous fit to all wavelengths at a given tilt strength as ex-

plained in the supplement of [9]. The fitting function is

A(t) = A0e
−Γ−(Dth,F,k)t, (5.8)

and it is fitted only to the late-time decay. Here, A0 is a fitting parameter that

can vary for each wavelength while Dth is fitted globally to all wavelengths. The

parameters F and k are fixed according to our experimentally measured values. The

fitting to this model is shown in Fig. 5.10 and the extracted diffusivities are shown

in Fig. 5.8.

5.5 Conclusion

We studied a new regime of thermalization in a square-lattice cold-atom Fermi-

Hubbard system subject to an external linear potential. Our system was effectively

closed and evolved under its own unitary dynamics starting from prepared initial

density waves of various wavelengths λ. By observing how the amplitude of these

initial density modulations evolved in time we found two qualitatively different hy-

drodynamic regimes and a crossover between them: At weak tilts the system relaxes

diffusively, in accordance with previous theory [174] and experiments [9]. At strong

tilts, we found a new regime where the system relaxes subdiffusively with a decay
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Figure 5.10: Simultaneous fitting of hydrodynamic model. Fitted normalized
relative amplitudes of the periodic density modulation (circles) vs. time for wave-
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(purple), and 23.3(2) alatt (pink) at different tilts. The lines are simultaneous fits of
the hydrodynamic model to the long-time decay after the initial average heating
(phase change). We are able to extract the thermal diffusivity through this fitting
method.

time τ that scales as τ ∝ λ4. We argued that this subdiffusive behavior is a result of

having to “drain” the large reservoir of tilt energy via the bottleneck of heat transport

en route to global equilibrium, and is captured effectively by a hydrodynamic descrip-

tion with the system remaining near local equilibrium. To test this understanding we

measured the local temperature profile and do indeed find that the system remains

near local equilibrium as it relaxes in this subdiffusive regime. In the supplemental

material of Ref. [13], we also develop and present a more complete and detailed hy-

drodynamic model that quantitatively captures the universal crossover between the

diffusive and subdiffusive regimes (Fig. 5.7). In the strongly tilted regime we used

our model to extract the tilt-strength-dependent thermal diffusivity that bottlenecks

the relaxation of the system. One perspective on why this novel subdiffusive regime

appears is that in the strong-tilt and long-wavelength limit the center-of-mass poten-

tial energy is the dominant part of the total energy, so energy conservation becomes

an emergent almost-conservation of the center of mass.
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In contrast to recent theoretical studies of potential ergodicity breaking in tilted

1D systems [156, 157], in this work we focused on the novel effects of a tilt on the

approach to equilibrium in an isolated system that does indeed thermalize. This

thermalization was robust because our system had a tilt potential along only one

of the two principal axes of the lattice, and the resulting unconstrained motion of

atoms in the perpendicular direction produced good thermal baths in each such row

of the lattice. To arrest this thermalization more microscopically, one avenue of future

exploration will be to apply tilt potentials along both axes of the lattice to suppress

such local thermalization.

5.5.1 Outlook

After this project, we focused back on Rydberg dressing but had to wait yet again

due to technical difficuilties. In this second interim, we re-built the laser system

to generate tilt potentials as shown in Fig. 5.2b. With this update we were able

to generate much stronger tilt potentials. However, we very quickly realized that

even these stronger tilt strength were not enough to reach the regime of Hilbert space

fragmentation due to our large system sizes. We did however study a second transition

to subdiffusive dynamics for the system in all directions. In this regime we found that

the system did not quickly reach local equilibrium in the same way that we found

in Fig. 5.9. Potentially showing that we were starting to peek into the pre-thermal

regime of fractonic physics. It is my hope that in the future, this 2D tilted system

will be studied again and our theory collaborators have some ideas of how to proceed.

It is also important to note that recently, non-ergodic dynamics have been observed

in tilted 1D Fermi-Hubbard chains [181].
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Chapter 6

Quench Dynamics of a Fermi Gas

with Strong Long-Range

Interactions

This chapter presents the work published as

E. Guardado-Sanchez, B. M. Spar, P. Schauss, R. Belyansky, J. T. Young,

P. Bienias, A. V. Gorshkov, T. Iadecola, and W. S. Bakr. Quench dynamics

of a Fermi gas with strong nonlocal interactions. Phys. Rev. X 11, 021036

(2021) [14]

In this chapter, we present experiments were we induce long-range interactions in

a 2D Fermi gas in an optical lattice using Rydberg dressing. The system is approxi-

mately described by a t− V model on a square lattice where the fermions experience

isotropic nearest-neighbor interactions and are free to hop only along one direction.

This is the first quantum simulation using a degenerate quantum gas with strong

non-local interactions. Much effort has been dedicated to this goal, including explo-

rations of quantum gases of magnetic atoms [20–23] and polar molecules [24, 25] by

many groups.
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6.1 Introduction

Ultracold gases are a versatile platform for studying quantum many-body physics [3].

The ability to engineer and control the interactions in these systems has played an im-

portant role in observing novel phases of matter including crossover fermionic super-

fluids [182] and dipolar supersolids [20, 183, 184] and in studying out-of-equilibrium

dynamical processes such as thermalization [21]. Recent efforts have focused on de-

generate quantum gases with long-range interactions including those of magnetic

atoms [20–23] and polar molecules [24, 25]. These systems may be distinguished

from other quantum platforms with long-range interactions including ions [26, 27],

Rydberg atoms [15], polar molecules in optical tweezers [28, 29] and atoms in optical

cavities [30], in that the particles are itinerant. This can lead to an interesting inter-

play between interactions, kinetic energy and quantum statistics. Rydberg dressing

has been proposed as an alternative route to realize quantum gases with tunable

long-range interactions [17–19]. Experimental demonstrations of Rydberg dressing

[55, 71–75, 88–91] have been performed with localized atoms or quantum gases of

heavy atoms where observation of motional effects has been elusive.

Here we investigate Rydberg dressing of lithium-6, a light fermionic atom. Its fast

tunneling in an optical lattice allows us to study the quench dynamics of itinerant

fermions with strong, purely off-site interactions.

Atoms in a quantum gas resonantly coupled to a Rydberg state experience strong

van der Waals interactions many orders of magnitude larger than their kinetic energy

for typical interatomic spacings, hindering access to the interesting regime where

the two energy scales compete. At the same time, the population of atoms in the

Rydberg state decays on a timescale of tens of microseconds, short compared to

millisecond motional timescales. Rydberg dressing addresses both of these issues.

Using an off-resonant coupling, the atoms are prepared in a laser-dressed eigenstate

|gdr〉 ≈ |g〉 + β |r〉 of predominant ground state (|g〉) character and a small Rydberg
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(|r〉) admixture, where β = Ω
2∆
� 1, Ω is the coupling strength, and ∆ is the laser

detuning from the transition frequency. This enhances the lifetime of the dressed

atom by a factor of 1/β2 relative to the bare Rydberg state lifetime. On the other

hand, the interaction between two atoms a distance r apart is reduced in strength and

can be approximately described by a tunable softcore potential V (r) = Vmax/(r
6 +r6

c )

with strength Vmax ∼ β3Ω and range rc ∼ (|C6/2∆|)1/6, where C6 is the van der

Waals coefficient for the Rydberg-Rydberg interaction. Early experiments with 3D

quantum gases were limited by rapid collective atom loss attributed to a blackbody-

induced avalanche dephasing effect [71–74]. Nevertheless, Rydberg dressing has been

successfully used to entangle atoms in optical tweezers [88], perform electrometry in

bulk gases [91], and study spin dynamics [55, 75, 90].

In this work, we report on the single-photon Rydberg dressing of a 2D 6Li Fermi

gas in an optical lattice in the presence of tunneling. This results in a lattice gas of

fermions with strong, non-local interactions. We characterize the interaction potential

using many-body Ramsey interferometry [75]. A careful study of the lifetime of

spin-polarized gases shows different behavior compared to previous Rydberg dressing

realizations, with the lifetime depending strongly on the density but not on the atom

number at fixed density. We also observe that the presence of tunneling in the system

has no effect on the lifetime. Finally, we use this platform to realize a 2D coupled-

chain t− V model consisting of interaction-coupled chains and study the short-time

quench dynamics of charge-density wave states, finding that the strong attractive

interactions inhibit the motion of the atoms.

Theoretical studies of the 1D t− V model [47, 48] have shown that it can exhibit

Hilbert-space fragmentation (HSF) [39, 40], in which dynamical constraints “shatter”

the Hilbert space into exponentially many disconnected subspaces. Like many-body

localization (MBL) [41, 42] and quantum many-body scars [43, 44], HSF is a mecha-

nism whereby isolated quantum systems can fail to reach thermal equilibrium after a
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quantum quench [45]. In the t− V model, HSF arises in the limit of strong interac-

tions, where the number of “bond” excitations, i.e., nearest-neighbor pairs of fermions,

joins the total fermion number as a conserved quantity. Our mixed-dimensional t−V

model inherits properties of the 1D version, including the HSF in the limit t/V → 0.

6.2 Experimental setup

Our system consists of a degenerate Fermi gas of 6Li atoms in a square optical lattice

of spacing alatt = 752 nm (Fig. 6.1a) [12]. We apply a 591.8(3) G magnetic field

perpendicular to the 2D system. We load spin-polarized gases prepared in a state

that may be labeled at high fields as |nl,ml,ms,mI〉 = |2S, 0,−1/2, 1〉 = |1〉, or

alternatively |2S, 0,−1/2,−1〉 = |3〉 depending on the measurement. We have control

over the initial density profile by employing a spatial light modulator. Using a 231 nm

laser beam with linear polarization parallel to the magnetic field and propagating

along the lattice x-direction, we couple the ground state atoms to the |28P, 0,−1/2〉

Rydberg state. By tuning the intensity and the detuning of the dressing light, we

have real-time control over the isotropic soft-core interaction potential between the

atoms in the gas (Fig. 6.1b).

6.2.1 Simulation of a t− V model

The lattice system is described by a single-band spinless fermion Hamiltonian

Ĥ = −t
∑
〈i,j〉

(ĉ†i ĉj + h.c.) +
∑
i 6=j

Vij
2
n̂in̂j +

∑
i

δin̂i, (6.1)

where t is a tunneling matrix element, Vij is the off-site interaction [Eq. 3.6 and

Fig. 6.1b(inset)] and δi is the potential due to single-particle light shifts contributed

by the lattice and Rydberg dressing beams. Since our dressing beam is tightly fo-
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Figure 6.1: Realization of a t − V model with Rydberg dressing. (a) The
Rydberg dressing beam propagates along the x-direction of the lattice, effectively
decoupling 1D chains in the y-direction due to a differential light shift. Hopping of
fermions (red dots) along the x-direction is unaffected. Interactions are isotropic.
(b) 6Li pair potentials for dressing to the state |28P,ml = 0,ms = −1/2〉 calculated
using [87]. The color of the lines represents the overlap with the target pair-state
(|28P, 0,−1/2〉⊗|28P, 0,−1/2〉) coupled via the laser with Rabi coupling Ω and detun-
ing ∆ from the target state. Inset: Calculated dressed potential for Ω = 2π×7.66 MHz
and ∆ = 2π × 35 MHz taking into account the overlaps to all pair potentials (orange
solid line). The dashed green line represents the expected dressed potential for a
simple van der Waals potential with C6 = h × 90.19 MHz a6

latt. Pink points are the
interaction at each lattice distance taking into account the wavefunction spread of
the atoms.

cused with a waist of 16.1(4)µm, the change in δ between rows in the y-direction,

which is orthogonal to the beam propagation axis, is much larger than t (for typical

experiments presented in Sec. 6.5, the minimum change in δ between rows is > 3t

near the intensity maximum of the Rydberg dressing beam). On the other hand,

because of the large Rayleigh range of the beam (∼ 3.5 mm), the variation of δ along

the beam propagation direction (x-direction) is negligible. To first approximation, we

drop the light shift term and the hopping along the y-direction. Thus, we can rewrite

our Hamiltonian as a coupled-chain t− V model of the form

Ĥ = −t
∑
〈i,j〉x

(ĉ†i ĉj + h.c.) +
∑
i 6=j

Vij
2
n̂in̂j. (6.2)
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Figure 6.2: Rydberg dressing of 6Li. (a) Level diagram showing the hyperfine
ground states of 6Li directly coupled to the 28P Rydberg state using linearly (π)
polarized light at a field of 592 G. The basis used is |ml,ms〉. (b) Rydberg dressing
scheme for two atoms in different hyperfine ground states |1〉 and |2〉 coupled to the
Rydberg state |r〉. Ω is the Rabi coupling of the laser, ∆ is the detuning from the
resonant transition between |1〉 and |r〉, ∆0 is the hyperfine splitting between |1〉
and |2〉 and V (R) = −C6/R

6 is the van der Waals interaction potential between two
Rydberg states |r〉.

6.2.2 Ground and Rydberg states used in the experiments

We work at a magnetic field of 592 G pointing in the direction perpendicular to the 2D

lattice plane. At this field, both the ground and Rydberg states are in the Paschen-

Back regime such that we can approximately label them using the |nl,ml,ms,mI〉

basis (Fig. 6.2a). The hyperfine ground states we use are |1〉 , |2〉 and |3〉 numbered

from lowest to highest in energy and having mI = 1, 0,−1 respectively. For the

Rydberg states, the nuclear spin splitting is negligible so states with different mI

can be considered degenerate. This approximation means that two atoms in different

hyperfine ground states will couple to Rydberg states at the same energy (both labeled

as |r〉) and interact with each other via a van der Waals potential (Fig. 6.2b).

In our quenches and lifetime measurements, we always start with a spin-polarized

gas of either state |1〉 or |3〉 atoms (both states are essentially equivalent and we

happen to have take some of our data in this paper using one or the other). However,
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for the interferometry measurements, we need to take into account the dressed inter-

action potential between two atoms in different hyperfine ground states which couple

to |r〉.

6.3 Rydberg-dressed interaction potentials

In order to characterize the Rydberg dressing interaction potentials, we perform

many-body Ramsey interferometry between states |1〉 and |2〉 = |2S, 0,−1/2, 0〉 fol-

lowing the procedure introduced in Ref. [75]. Starting from a spin-polarized band

insulator of atoms prepared in state |1〉 in a deep lattice that suppresses tunneling, a

π/2 radiofrequency pulse prepares a superposition of state |1〉 and |2〉, which acquire

a differential phase during a subsequent evolution for time T in the presence of the

dressing light. Unlike Ref. [75], the splitting between the hyperfine ground-states

of 6Li is comparable to the detuning ∆ of the dressing laser (Fig. 6.3a), and both

states are significantly dressed by the light (Sec. 3.3.3). First, we obtain the spa-

tial profile of the Rabi coupling strength Ω(i, j) by measuring the population of |2〉

after a π/2 − T − π/2 pulse sequence using a detuning ∆ = 2π × 100 MHz. The

large detuning is chosen so that the interactions, whose strength scales as 1/∆3, are

negligible, while the single-particle light shifts that scale as 1/∆ lead to a large dif-

ferential phase during the evolution. From these measurements, we extract the waist

of the beam (16.1(4)µm) and measure Rabi couplings up to Ω = 2π × 9.48(8) MHz

(Fig. 6.3b). The measured spatial profile of the Ramsey fringe frequency confirms the

rapid variation of δi along the y-direction, while no variation of δi is observed along

the x-direction within the statistical uncertainty of the measurement (∼ 1 kHz).

To probe interactions in the system, we switch to a smaller detuning ∆ =

2π × 35 MHz. We measure density correlations of state |1〉 (C(r) = 〈n1(r)n1(0)〉 −

〈n1(r)〉 〈n1(0)〉) after a spin-echo pulse sequence (π/2 − T − π − T − π/2) which

138



eliminates differential phases due to the light shift. Fig. 6.3c shows the measured

correlations after different evolution times T compared to the theoretical expectation

(Sec. 3.8.1). Fig. 6.3d depicts the evolution of the nearest-neighbor and next-nearest-

neighbor correlations with the correlation offset C(∞) subtracted. This offset is

attributed to correlated atom number fluctuations in the images [75]. We find good

agreement with the theoretical model, which predicts a nearest-neighbor (next-

nearest-neighbor) attractive interaction |V10| = h×4.2(2) kHz (|V11| = h×1.37(6)

kHz) (Fig. 6.1b)

6.4 Lifetime Characterization

To probe coherent many-body physics in our system, the lifetime τ of the sample has

to be larger than the interaction and tunneling times. Atoms resonantly excited to

a Rydberg state are lost from our system on a timescale of tens of microseconds for

several reasons: photon recoils due to spontaneous emission and large forces due to

anti-trapping optical potentials and due to interactions with other Rydberg atoms.

Due to its Rydberg admixture, an isolated dressed atom decays with a lifetime τeff =

τ0/β
2, where τ0 is the lifetime of the Rydberg state determined by radiative and

blackbody-driven transitions to other states. Previous experiments with frozen 2D

and 3D systems have observed much shorter lifetimes than τeff [71–75]. A simplified

model used to explain these experiments considers a blackbody-driven decay of the

dressed state to a pure Rydberg state of opposite parity. The first such contaminant

appears in the system on a timescale τc = τBB/(Nβ
2) where τBB is the blackbody

lifetime of the Rydberg state and N is the number of atoms in the system. This atom

interacts with other dressed atoms through resonant state-exchange characterized by

a C3 coefficient, broadening the Rydberg line. In particular, other atoms at a certain

facilitation radius (|C3/∆|)1/3 will be resonantly excited, leading to avalanche loss of
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measured at a detuning of ∆ = 2π × 100 MHz at different positions in the cloud.
The frequency is almost constant along the propagation direction of the beam (pur-
ple). In the transverse direction (yellow), it varies rapidly as expected for a tightly
focused Gaussian beam. Insets: (i) Ramsey oscillations at two representative posi-
tions in the cloud. (ii) Sample image of one spin state in the cloud at T = 20µs.
(c) Spin correlations for different spin-echo pulse times at Ω = 2π × 7.66(7) MHz
and ∆ = 2π × 35 MHz. Measurement (top) and theoretical expectation (bottom).
(d) Nearest (green) and next-nearest (orange) neighbor correlations after subtract-
ing C(∞). Lines correspond to the expected correlations. Experimental error bars
correspond to standard error of the mean.
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all the atoms from the trap. Experiments in 2D have indeed observed a collective

lifetime close to τc and a bimodal atom number distribution in lifetime measurements

[75]. We have not observed such bimodality in our 2D systems, and the lifetime

does not depend strongly on N at fixed density (App. 6.4.1). In this regard, our 2D

6Li experiments are closer to 87Rb experiments with 1D chains where the avalanche

mechanism is suppressed to some extent [90].

The atom number decay in a frozen system of 7 by 7 sites is shown in Fig. 6.4a.

The decay is not exponential, indicating a density-dependent lifetime which we extract

by fitting different sections of the decay curve. For dressing to |28P 〉, τ0 = 30.5 µs

[66]. We measured the density-dependent lifetime for Ω = 2π × 9.25(8) MHz at

three different detunings, ∆ = 2π × (30, 40, 60) MHz (Fig. 6.4b). Around half-filling,

the collective lifetime is ∼ 0.3τeff for ∆ = 2π × 30 MHz and approaches τeff for the

smallest densities (n ∼ 0.1). For comparison, perfect avalanche loss would predict

τc = 0.08τeff.

Next, we measure the lifetime of the dressed gas in the presence of tunneling,

which has been a topic of theoretical debate [108, 109]. We measure the density-

dependent lifetime for different lattice depths, spanning the frozen gas regime to a

tunneling of 1.7 kHz (Fig. 6.4c). We do not observe any change of the lifetime with

tunneling. A potential concern in this measurement is that the tunneling along the

x-direction may be suppressed by uncontrolled disorder in δi. We rule this out by

preparing a sparse strip of atoms and observing its tunneling dynamics. As expected

for a clean dressed system, the tunneling dynamics along the x-direction is almost

identical to the case without the dressing light, while the dynamics is frozen along

the y-direction (Fig. 6.4c(inset)). Combining the results of our interferometry and

lifetime measurements, we achieve a lifetime of several interaction times measured by

the figure of merit V10τ/~ ∼ 20 [90] for a mobile system with n = 0.5.
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Figure 6.4: Lifetime of itinerant Rydberg dressed fermions. (a) Atom number
vs. dressing time for a frozen gas. The red circles correspond to measurements on a
system of 7 by 7 sites. Dashed-dotted line corresponds to an exponential fit to the
first 5 data points and dashed line corresponds to the expected single-particle dressed
lifetime τeff. (b) Measured lifetime in a frozen gas in units of τeff vs. the initial density
for Ω = 2π × 9.25(8) MHz and ∆ = 2π × (30 (green), 40 (purple), 60 (orange)) MHz.
Inset: Same measurements in units of ms. (c) Lifetime vs. initial density for different
tunnelings: 0.01 kHz (green), 0.25 kHz (purple), 1.0 kHz (orange), and 1.7 kHz (pink).
The data is taken with Ω = 2π × 6.04(8) MHz,∆ = 2π × 30 MHz. Insets: (i) Tun-
neling dynamics of atoms sparsely initialized on a strip along the y-direction with no
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error bars correspond to standard error of the mean.
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6.4.1 Dependence of lifetime on atom number at fixed den-

sity

In our search for a suitable Rydberg state to use for our dressing experiments, we ex-

plored many different principal quantum numbers. We eventually chose 28P because

it gave us a good ratio between the measured collective lifetime and the theoretical

single-particle lifetime, while also having a large enough C6 to achieve strong nearest-

neighbor interactions in the lattice. We explored larger principal quantum numbers

but found much shorter lifetimes than the expected values. One possible reason is the

coupling to neighboring pair-potentials that have non-zero overlaps with the target

state at close distances (Fig. 6.1). However, the general behavior of the many-body

lifetimes with atom number and geometry of the cloud remained the same over sig-

nificantly different principal quantum numbers. In particular, the lifetime showed

no strong dependence on the atom number at fixed density over the range we could

explore in the experiment. Fig. 6.5 shows the initial lifetime vs. the initial atom

number for 2D systems 4 alatt wide and of variable length along the direction parallel

to the dressing beam for the 31P and 40P Rydberg states.

6.5 Quench Dynamics

To probe the interplay of interactions and tunneling in our system, we use light

patterned with a spatial light modulator to initialize the system in a charge density

wave state of atoms in state |3〉. The initial density pattern approximates a square

wave with period λ = 4 alatt and width w = 7 alatt, with the average density oscillating

between n ∼ 0 and n ∼ 0.7. (see Figs. 6.6a-b). Dynamics in a lattice with t =

h×1.7 kHz is initiated by suddenly turning off the patterning potential while keeping

walls in the y-direction as in [13]. We average the density profiles over the non-hopping

direction and observe a qualitative change in the dynamics as we increase V/t (here
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Figure 6.5: Dependence of lifetime on atom number at fixed density. (a)
Initial lifetime for 2D systems with different initial atom number dressed to 31P .
Measurements are made in a 2D rectangular system of small width ∼ 4 alatt and
variable length along the dressing beam direction. We observe no strong dependence
on the atom number. The Rabi frequency is approximately constant over the entire
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2π × 40 MHz and n = 0.55. (insets) Raw data with exponential fits to extract the
initial decay rate. Experimental error bars correspond to standard error of the mean.

V ≡ |V10|) from 0 to 2.9(2) (Fig. 6.6c). To emphasize the evolution of the pattern,

we scale the data to account for atom loss during the evolution (SecS. 6.5.1). In the

non-interacting quench, we observe that the phase of the charge density wave inverts

at a time ∼ ~/t as is expected for a coherent evolution [9]. For strong interactions,

the decay of the charge density wave slows down and the system retains a memory

of its initial state for longer times.

This can be understood as an interplay between two conservation laws: the in-

trinsic U(1) particle number (N̂ =
∑

x n̂x) conservation as well as an emergent con-

servation of the number of bonds N̂b =
∑

x n̂xn̂x+1. The latter becomes a conserved

quantity when the longer range interactions are ignored, and in the limit of infinite

V/t. States of the form |...0011001100...〉 along the hopping direction, which the im-

printed density pattern attempts to approximate, would be completely frozen in the
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limit of infinite V/t [47]. For a large but finite V , moving a single atom (and hence

breaking a bond) costs an energy of up to 3V , which is energetically unfavorable, and

hence leads to reduced relaxation dynamics.

To quantify the difference in the dynamics of the different quenches, we em-

ploy two different methods. The first is to fit a sinusoid of the form n(x, t) =

A sin (2πx/λ+ φ) + B to determine the amplitude of the wave relative to its mean,

A/B (Fig. 6.6d). The fit is restricted to |x| ≤ 6 alatt, and φ is fixed by the initial

pattern. The second method is to calculate the autocorrelation function

ρ(t) =
covx(n(x, 0), n(x, t))

σx(n(x, 0))σx(n(x, t))
, (6.3)

where covx and σx are the covariance and the standard deviation respectively

(Fig. 6.6e).

Further confirmation that the slower decay of the charge density waves is an inter-

action effect is obtained by varying the average density in the initial state. Fig. 6.7a

shows these initial states and their time evolution for V/t = 2.9(2). As the average

density of the initial state is decreased, it approaches a “sparse” limit where the prob-

ability of having two neighboring atoms is negligible. In this regime, the system is

effectively non-interacting and we recover the phase inversion during the evolution.

Since these measurements are done at fixed power of the dressing light, they rule out

disorder-induced localization as a mechanism for arresting the dynamics.

6.5.1 Atom loss during charge density wave dynamics

We observe an atom loss of ∼ 30% for the longest evolution times for the dataset

with the maximum initial density and interaction strength. For the dataset where

interaction was varied by changing the dressing laser intensity, the lifetime gets longer

for smaller interactions due to the reduction of the Rydberg dressing parameter β =
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Ω
2∆

. For the dataset where the initial density was varied at fixed interaction strength,

the lifetime increased for lower initial densities (Fig. 6.8). These measurements are

in accordance with our observed density dependent lifetime measurements shown in

Fig. 6.4.

6.6 Numerical simulations

We use exact diagonalization to simulate the quench dynamics of our experiment.

As the simulation for the full experimental 2D system (∼ 7× 21) is computationally

intractable, we compare instead to numerics on a 2×11 t−V model with only nearest-

neighbor interactions and no tunneling along the y-direction and find qualitative

agreement with the measurements.

We account for atom loss during the experiment via a Lindblad master equation

∂tρ̂ = −i(Ĥeffρ̂ − ρ̂Ĥ†eff) + Γ
∑

i âiρ̂â
†
i . Here, Ĥeff = Ĥ − iΓ

2
N̂ is the effective non-
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Hermitian Hamiltonian [Ĥ is the t − V Hamiltonian from Eq. (6.2)] and the second

term describes quantum jumps corresponding to atom loss with rate Γ. We solve the

master equation using the quantum trajectory approach [185]. Note that the anti-

Hermitian term in Ĥeff is a constant due to the particle number conservation, and

hence it can be neglected since Ĥeff and Ĥ generate the same dynamics (up to the

normalization, which only serves to determine the timings of the quantum jumps).

The initial state for each trajectory is sampled directly from the experimental data

taken at t = 0. We pick a 2× 9 region centered on 2 of the 4 density peaks from the

experimental images (Fig. 6.6a). In order to reduce boundary effects, we add empty

sites on each end of the chain. We average the resulting dynamics over the different

trajectories, whose number is comparable to the number of experimental snapshots.

Next, we analyze the averaged simulated dynamics using the same methods we use

for the experimental data. Fig. 6.6 shows the comparison of the experiments with

these numerical simulations. We find good qualitative agreement with this small 2D

coupled-chain numerical model.

The 2D nature of the system is important for fully understanding the relaxation

time-scales in our system. In particular, in a one-dimensional system, moving a single

atom from the initial “...00110011...” pattern (and hence breaking a bond) costs an

energy V . However, in the coupled-chain t − V model with isotropic interaction,

breaking a bond now costs up to 3V for the idealized initial charge density wave

state. We thus expect the 2D system to have slower relaxation rate compared to a

1D system with the same interaction strength.

To verify this, we perform additional numerical simulations on a single chain of 21

atoms. Similarly to our 2D simulation, we sample 1×19 arrays from the experimental

snapshots at t = 0 and add empty sites at the ends. We find that the atoms spread

quicker than they do in the ladder geometry and have worse agreement with the

experimental results. Fig. 6.9 shows a comparison between the 1D and 2D coupled-

149



0

0.5

1

0 0.5 1

(a) (b)

Re
la

tiv
e 

A
m

pl
itu

de

Time (ħ/t)

1D

0

0.5

1

0 0.5 1

Re
la

tiv
e 

A
m

pl
itu

de

Time (ħ/t)

2D coupled-chain

Figure 6.9: Role of interchain couplings in slowing down charge density
wave relaxation. Numerical simulations of a t − V model with tunneling t along
only one direction and isotropic nearest-neighbor interactions V . (a) Fitted relative
sinusoid amplitude to observed (circles) and calculated quench dynamics of 1 × 21
systems (shaded regions). The colors represent the different interaction strengths
V/t = [0 (green), 0.78(7) (orange), 1.61(8) (purple), 2.9(2) (pink)] explored in the
experiment. (b) Same comparison as in (a) but for calculations done on 2 × 11
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chain numerical simulations on the one hand and the experimental data on the other.

This comparison highlights the importance of the interchain interactions in order to

fully understand our system.

The remaining discrepancy between some of the numerical and experimental re-

sults could be attributed to several factors. First, we are only able to simulate a

smaller system than in the experiment. We expect that adding additional chains

could further slow down the relaxation dynamics. Second, our modelling of the atom

loss via a Lindblad master equation assumes that the decay rate is exponential. How-

ever, as we showed in Sec. 6.4, the decay rate is actually non-uniform in space and

time, and depends on the density.
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6.7 Conclusions

Our results present a new frontier in quantum simulations of itinerant lattice models

with strong off-site interactions. By working with larger rc/a, spinless fermion models

may be used to explore equilibrium phases such as topological Mott states [186] or

cluster Luttinger liquid phases [31]. Moreover, the system considered in this work

provides a platform for the experimental realization of models prevalent in theoret-

ical studies of non-equilibrium dynamics. For example, the 1D t − V model can be

mapped to the XXZ spin chain, which has long been studied in the context of many-

body localization [187–189]. This model and variants thereof have also been proposed

to harbor dynamical phases intermediate between full MBL and thermalization [190–

192]. Our work lays the foundation for future studies of such phenomena, as well as

other non-equilibrium dynamical regimes including prethermalization [193]. Further-

more, the close spacing between the hyperfine ground states of 6Li also opens the

door for the simultaneous dressing of two spin states and the exploration of extended

Fermi-Hubbard models.

The present experiment has allowed us to start probing coherent dynamics in

t − V models, which we plan to continue to explore especially upon improving the

interaction-lifetime figure of merit. For example, for small but finite t/|V |, it is

possible to access a complex hierarchy of timescales for quench dynamics that depends

crucially on the initial state [48].

Our work motivates further theoretical and experimental exploration of the mixed-

dimensional models in the context of both the non-equilibrium dynamics and ground-

state physics [194] such as meson formation. Another promising direction based on the

interplay of Rydberg-dressing and atomic motion is vibrational dressing [195, 196],

non-destructive cooling [197], an exploration of multi-band physics, as well as the

use of microwave-dressed Rydberg states, allowing for both attractive and repulsive

dressed 1/r3 dipole-dipole interactions [80].
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There are several possible approaches to improve the interaction-lifetime figure

of merit. Enhancement of the Rabi coupling by over an order of magnitude may

be achieved using a build-up cavity [198]. For a single-particle system, the figure of

merit scales with Ω at fixed β, while further enhancement of the collective lifetime is

expected in this regime due to shrinking facilitation radii for increasing ∆. Increasing

Ω by a factor of 10 at fixed β leads to facilitation radii that are a factor of 101/3

smaller. For almost all states coupled to by blackbody radiation, the facilitation radii

become less than one site. If collective loss is completely inhibited, the combined

effect is to enhance the figure of merit by a factor of ∼ 30. The principal quantum

number used in this experiment was chosen to keep the range of the interaction on

the order of one site. Relaxing this constraint or alternatively using a larger lattice

spacing would allow using longer-lived Rydberg states at higher principal quantum

number. Using electric fields to tune close to a Förster resonance results in deep

potential wells that may be exploited to enhance the figure of merit by a factor of

|∆|/Ω [199] and potentially allow us to achieve repulsive interactions. Finally, the

single particle lifetime can be improved and the collective black-body induced atom

loss may be completely eliminated by operating at cryogenic temperatures (improving

the figure of merit by a factor of ∼ 6 for fixed dressing laser parameters).
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Chapter 7

Conclusion and Outlook

In this thesis we have reported on a variety of experiments where we have expanded

on the capabilities of our existing Fermion Quantum Gas Microscope [92, 93]. We

emphasized the physics of Rydberg atoms and particularly the development of Ryd-

berg dressing for 6Li atomic systems. Our experiments show that quantum simulation

experiments based on single-photon excitation of lithium-6 atoms to Rydberg states

can serve as a highly-flexible platform to study different types of many-body systems.

We were able to study the quench dynamics of a many-body 2D quantum Ising

model well beyond the capabilities of state-of-the-art numerical simulations. While

our realization using an optical lattice is not ideal, our experiments point to the im-

portance of taking into account motional decoherence effects [155]. This decoherence

is stronger in our optical lattice, but is also present in tweezer arrays and should be

taken into account to achieve high fidelities of quantum-gates.

Outside of Rydberg physics, we studied the 2D tilted Fermi-Hubbard model ob-

serving the onset of subdiffusive charge dynamics with tilt strength. To understand

the slow relaxation dynamics we built an universal hydrodynamic theory for the equi-

libration of systems at infinite temperatures. From this model, we uncovered that

the observed subdiffusive charge dynamics were a product of slow heat diffusion in
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the system which bottlenecks the density relaxation to maintain local equilibrium.

At much stronger tilt strengths we would expect the system to reach a nonergodic

phase where the system is dynamically constrained.

Finally, we successfully implemented the technique of Rydberg dressing in our

system of 6Li atoms. Using this novel platform, we were successful in realizing an

itinerant lattice model in the presence of long-range interactions. We realized a

spinless t − V model and observed a clear effect of interactions on the relaxation

dynamics of charge density waves. This experiment opens the door to studying many

more strongly-interacting quantum gas systems which are detailed in Ch. 6.

7.1 Outlook

With the advent of other platforms working towards degenerate quantum gases with

long-range interactions such as polar molecules [24, 25] and magnetic atoms [20–23],

it will be important to fix the non-trivial decay mechanisms currently limiting Ry-

dberg dressing experiments. In Sec. 3.7 we detailed the lifetime characterization of

our system and present evidence that the limiting decay mechanism in our system

is not satisfactorily explained by complete black-body avalanche loss observed in ex-

periments with Rb and Cs systems. Instead, we observe a density-dependent lifetime

which is invariant on the atom number. It is possible that our observed decay is

could be explained by direct excitation to pair-states which have non-zero overlap

with the target Rydberg state at short distances. An issue like this one could be fixed

by changing the geometry of the system. Recently in our lab, we have developed a

technique to build Fermi-Hubbard models using optical tweezers which should allow

us to vary the spacing between the lattice sites. This opens the door to studying the

dependence of the lifetime on the spacing when coupling to a fixed Rydberg state, or

alternatively, coupling to states with larger principal quantum numbers.
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Another option is to modify the Rydberg dressing scheme away from the simple

picture described in Sec. 2.8. One such way, is to further explore the Förster res-

onances that can be tuned using magnetic or electric fields (App. C) and dress on

a strong avoided-crossing of the target pair-state with a different state. For lower

principal quantum numbers, the resonant lines should move much closer in distance

and allow us to explore very strong repulsive interacting models.

Without truly fixing the limiting decay mechanism, we can still increase the coher-

ence by enhancing the Rabi coupling of our UV laser. In Table 2.5 we show that the

interaction-to-lifetime ratio increases with power. At 230 nm it is not really feasible

to get a laser with a much larger power output than our current laser. However, we

could employ the use of a build-up cavity [198] to greatly enhance the Rabi coupling

and thus the coherence.

For Rydberg systems in general, the black-body radiation does not only lead to

global loss through the avalanche mechanism. It also limits the bare Rydberg lifetimes

of single atoms for large principal quantum numbers (Eq. 2.13). The only way to avoid

these decay channels is to build cryogenic experiments where the black-body spectrum

no longer couples nearby Rydberg states so strongly. There are currently multiple

groups building or designing Rydberg cryogenic experiments.
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Appendix A

Numerov’s Algorithm

Numerov’s algorithm was developed in 1924 [68] to numerically solve second order

differential equations of the form

(
∂2

∂x2
+ a(x)

)
y(x) = 0 (A.1)

y′′(x) + a(x)y(x) = 0 (A.2)

taking into account corrections up to 5th order of a discrete stepsize h. Eq. 2.8 is an

example of an equation solvable with this method. In this appendix, we will describe

how to derive the algorithm and how to use it to solve for the radial wavefunctions

of Rydberg atoms.

A.1 Derivation

The method essentially works by discretizing the space and using Taylor expansions

to build the function y(x) one step at a time starting on one end. To derivate it, first

you can do a Taylor expansion of y(xn± h) = yn±1 up to 5th order where xn denotes
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a particular step n in the function:

yn±1 = yn ± hy′n +
h2

2!
y′′n ±

h3

3!
y′′′n +

h4

4!
y′′′′n ±

h5

5!
y′′′′′n +O[h6] (A.3)

Next, we add both of these functions together to get:

yn+1 + yn−1 = 2yn + h2y′′n +
h4

12
y′′′′n (A.4)

Substituting in Eq. A.2 and using the second-order finite difference1:

yn+1 + yn−1 = 2yn − h2ynan −
h4

12

∂2

∂x2
n

(a(xn)y(xn)) (A.5)

yn+1 + yn−1 = 2yn − h2ynan −
h2

12
(an+1yn+1 − 2anyn + an−1yn−1) (A.6)

Finally, one can solve for either yn+1 or yn−1. In this case, we choose to solve the

function backwards as we know that in the case of Rydberg atoms, the function a(x)

has a much slower rate of change and as such is a nicer place to start the algorithm.

With this consideration, we end up with the following equation which will be useful

to find solutions for wavefunctions in arbitrary potentials:

yn−1 =
(24− 10h2an) yn − (12 + h2an+1) yn+1

12 + h2an−1

(A.7)

A.2 Implementation for Rydberg atoms

This algorithm is relatively simple to implement using modern computers. For the

particular case of solving for the wavefunction of Rydberg atoms (Eq. 2.8), we took

a few considerations. First, it is useful to choose a sufficiently small stepsize where

the algorithm is well defined. In our case we used h = 0.005 a0 as the equation is

1This follows from f ′(x) ≈ f(x+h)−f(x)
h ≈ f(x)−f(x−h)

h so that f ′′(x) ≈ f ′(x+h)−f ′(x)
h =

(f(x+h)−f(x))−(f(x)−f(x−h))
h2 = f(x+h)−2f(x)+f(x−h)

h2
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written in atomic units. Next, we need to make a good choice of initial parameters

to “seed” Eq. A.7 with. For this purpose, we choose to discretize the space from 0 to

a maximum radius rmax = 2n (n+ 15)2 where the wavefunction is certainly zero. We

set our initial parameters to:

y(rmax) = yend = 0 (A.8)

y(rmax − h) = yend−1 = (−1)n+l+1 × 10−10 (A.9)

Where (−1)n+l+1 is an important consideration for the proper integration of dipole

matrix elements with different quantum numbers. We use this values to point-by-

point build the wavefunction using Eq. A.7. An interesting consideration, is that the

algorithm prefers to work with very small numbers so we make sure to divide by 10

if the calculated value of |yn−1| is ever above 10−9.

Finally, the last important step is to decide when to stop the algorithm. At close

distances, the potential changes much more rapidly so our choice of h might no longer

be correct. A work around we found was to flag the position at which a(x) changes

sign (same as when the bound energy and the potential are equal) and after that the

first time that |yn−1| > |yn| we set it to 0 and stop the algorithm. Using this we are

able to calculate the radial wavefunctions of Rydberg atoms as shown in Fig. 2.1.

While not in the scope of this thesis, during this PhD, the same algorithm was

used to successfully find the bound states of NaRb molecular potentials. These bound

states were used to calculate Franck-Condon factors in order to design the STIRAP

sequence of a new molecular microscope currently being built in our group.

2From Table. 2.1 we know that the orbital radius increases quadratically with n so this ensures
that we choose a suitably large rmax for any principal quantum number n.
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Appendix B

Calculated C6 values of 6Li

pair-states.

This Appendix presents a summary of calculated C6 values of 6Li pair-states with full

angular dependence. The calculations were made as described in Sec. 2.5.1 and span

principal quantum numbers n = {20, 50}. It is important to note that we found no

difference in the C6 values for pair states with the same absolute value of |m|.

From the tables, one can note that only the nP pair-states have a Förster reso-

nance at zero field. Moreover, only nS pair states have repulsive interactions (C6 < 0)

while the rest are attractive. These calculations helped decide on a single-photon Ry-

dberg dressing design to directly connect our ground-state atoms with nP Rydberg

states.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 -0.490621 -1.30832 -0.654161 -1.962485 -1.9624857 -1.9624857
21 -0.509414 -1.35843 -0.679219 -2.037658 -2.0376586 -2.0376586
22 -0.526561 -1.40416 -0.702081 -2.106245 -2.1062455 -2.1062455
23 -0.542266 -1.44604 -0.723022 -2.169067 -2.1690672 -2.1690672
24 -0.556706 -1.48454 -0.742274 -2.226824 -2.2268248 -2.2268248
25 -0.570026 -1.52007 -0.760035 -2.280107 -2.2801079 -2.2801079
26 -0.582354 -1.55294 -0.776472 -2.329417 -2.3294176 -2.3294177
27 -0.593795 -1.58345 -0.791727 -2.375183 -2.3751829 -2.3751830
28 -0.604443 -1.61184 -0.805924 -2.417773 -2.4177730 -2.4177730
29 -0.614376 -1.63833 -0.819169 -2.457507 -2.4575076 -2.4575076
30 -0.623666 -1.66310 -0.831554 -2.494664 -2.4946646 -2.4946646
31 -0.632371 -1.68632 -0.843162 -2.529487 -2.5294873 -2.5294873
32 -0.640547 -1.70812 -0.854063 -2.562189 -2.5621891 -2.5621891
33 -0.648239 -1.72863 -0.864319 -2.592958 -2.5929583 -2.5929583
34 -0.655490 -1.74797 -0.873987 -2.621961 -2.6219617 -2.6219617
35 -0.662336 -1.76622 -0.883114 -2.649344 -2.6493443 -2.6493443
36 -0.668811 -1.78349 -0.891749 -2.675247 -2.6752473 -2.6752473
37 -0.674946 -1.79985 -0.899928 -2.699785 -2.6997854 -2.6997854
38 -0.680786 -1.81543 -0.907715 -2.723146 -2.7231469 -2.7231469
39 -0.686273 -1.83006 -0.915031 -2.745094 -2.7450945 -2.7450945
40 -0.691532 -1.84408 -0.922043 -2.766129 -2.7661291 -2.7661291
41 -0.696536 -1.85743 -0.928715 -2.786145 -2.7861459 -2.7861459
42 -0.701306 -1.87015 -0.935075 -2.805225 -2.8052259 -2.8052259
43 -0.705858 -1.88228 -0.941144 -2.823434 -2.8234348 -2.8234348
44 -0.710207 -1.89388 -0.946943 -2.840831 -2.8408312 -2.8408313
45 -0.714367 -1.90497 -0.952489 -2.857468 -2.8574687 -2.8574687
46 -0.718348 -1.91559 -0.957798 -2.873395 -2.8733959 -2.8733959
47 -0.722164 -1.92577 -0.962885 -2.888657 -2.8886574 -2.8886574
48 -0.725823 -1.93552 -0.967764 -2.903294 -2.9032939 -2.9032940
49 -0.729335 -1.94489 -0.972447 -2.917343 -2.9173434 -2.9173434
50 -0.732710 -1.95389 -0.976946 -2.930840 -2.9308404 -2.9308404

Table B.1: Calculated C6 values for 6Li |nS, 1/2,±1/2〉 ⊗ |nS, 1/2,±1/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 3.0797687 9.5403891 6.7617034 12.3190748 15.30633808 18.29360135
21 3.0707908 9.5159692 6.748775 12.2831632 15.26934899 18.25553455
22 3.0611628 9.4895449 6.7344387 12.2446512 15.22915048 18.21364988
23 3.0532504 9.4683839 6.723766 12.2130016 15.19736286 18.1817239
24 3.0419273 9.4363715 6.7050339 12.1677092 15.14798133 18.12825358
25 3.0301324 9.4031952 6.685861 12.1205296 15.09692451 18.07331965
26 3.0166094 9.3649297 6.663422 12.0664376 15.03787314 18.0093089
27 3.0003553 9.3186366 6.6358519 12.0014212 14.96622169 17.93102208
28 2.9796283 9.2592573 6.6000013 11.9185132 14.87407227 17.82963123
29 2.9510654 9.1770163 6.5497709 11.8042616 14.74615582 17.68804993
30 2.9071215 9.0499715 6.4714573 11.628486 14.54819304 17.46790043
31 2.8265265 8.8162691 6.3264321 11.306106 14.18355242 17.06099873
32 2.6172654 8.2081752 5.9472888 10.4690616 13.2338634 15.9986652
33 0.3348758 1.5691428 1.798782 1.33950356 2.860819498 4.38213539
34 3.7419911 11.481356 7.994748 14.9679644 18.34906903 21.7301741
35 3.3631619 10.379877 7.3071056 13.4526476 16.628399 19.8041495
36 3.2529224 10.059716 7.1077416 13.0116896 16.12851575 19.245341
37 3.1994038 9.9045309 7.0114467 12.7976152 15.88638698 18.97515888
38 3.1672309 9.8114148 6.9539063 12.6689236 15.74122167 18.81352008
39 3.1454148 9.7484024 6.9151455 12.5816592 15.64307574 18.70449218
40 3.1294258 9.702318 6.8869326 12.5177032 15.57136379 18.62502415
41 3.117054 9.6667346 6.8652532 12.468216 15.51604485 18.5638737
42 3.1070915 9.6381403 6.8479148 12.428366 15.47163279 18.5148998
43 3.0988213 9.6144512 6.8336171 12.3952852 15.43487254 18.47445978
44 3.0917899 9.5943495 6.8215395 12.3671596 15.40370663 18.44025378
45 3.0856935 9.576955 6.8111362 12.342774 15.37676186 18.41074995
46 3.0803035 9.5616169 6.80202 12.321214 15.35303114 18.3848485
47 3.0757957 9.5486458 6.7941087 12.3031828 15.33286159 18.36254028
48 3.0713433 9.5360844 6.7867956 12.2853732 15.3135033 18.3416334
49 3.0674262 9.5249796 6.7802545 12.2697048 15.29635176 18.32299883
50 3.0638503 9.5148495 6.7742977 12.2554012 15.28071072 18.30602013

Table B.2: Calculated C6 values for 6Li |nP, 1/2,±1/2〉 ⊗ |nP, 1/2,±1/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 3.70375 9.6359359 5.0744761 14.815 14.62075819 15.12132123
21 3.689001 9.6087281 5.0669051 14.756004 14.58220348 15.08953748
22 3.6735845 9.579522 5.058212 14.694338 14.54060263 15.0545615
23 3.6638456 9.5562746 5.0498794 14.6553824 14.50732749 15.02607425
24 3.6460229 9.5215441 5.0381729 14.5840916 14.45721509 14.98191193
25 3.6292211 9.4857599 5.0250543 14.5168844 14.40537821 14.93559328
26 3.6107069 9.4447655 5.0092139 14.4428276 14.34572073 14.88143818
27 3.5891943 9.3954968 4.9892886 14.3567772 14.27370731 14.81509365
28 3.5625848 9.3326795 4.9628852 14.2503392 14.18153356 14.7290765
29 3.526888 9.2461466 4.9253376 14.107552 14.05413933 14.6088976
30 3.4732031 9.1131234 4.8661533 13.8928124 13.85777583 14.42204803
31 3.3765344 8.8695727 4.7558063 13.5061376 13.49754393 14.07709858
32 3.1294358 8.2399117 4.4669866 12.5177432 12.56493958 13.18015565
33 0.5505337 1.6303068 1.4170023 2.20213476 2.768792366 3.738788865
34 4.4654343 11.673285 6.0557757 17.8617372 17.65517803 18.09092963
35 4.0079553 10.503443 5.5172354 16.0318212 15.92180711 16.42173495
36 3.8750095 10.165646 5.3627752 15.500038 15.42166518 15.9412537
37 3.8100801 10.002091 5.2886807 15.2403204 15.17975529 15.70961168
38 3.7707077 9.9039136 5.244694 15.0828308 15.0347201 15.5712692
39 3.7437433 9.8374054 5.2152579 14.9749732 14.93659947 15.47807358
40 3.7237738 9.788697 5.193974 14.8950952 14.86483795 15.4102153
41 3.7081593 9.7510294 5.1777269 14.8326372 14.80941928 15.35804483
42 3.6954567 9.7207117 5.1648171 14.7818268 14.76487446 15.31629518
43 3.6848088 9.6955544 5.1542382 14.7392352 14.72795989 15.28184475
44 3.6756723 9.6741732 5.1453556 14.7026892 14.69662545 15.2527224
45 3.6676823 9.6556421 5.1377482 14.6707292 14.6695013 15.22761575
46 3.6605594 9.6392694 5.1311185 14.6422376 14.64557208 15.20557603
47 3.6545895 9.625513 5.1253904 14.618358 14.6253816 15.1867179
48 3.6486103 9.6120211 5.1201248 14.5944412 14.60574651 15.1688911
49 3.6433304 9.6001272 5.1154348 14.5733216 14.58840778 15.1530587
50 3.6384845 9.5892692 5.1111811 14.553938 14.57258834 15.13864198

Table B.3: Calculated C6 values for 6Li |nP, 3/2,±1/2〉 ⊗ |nP, 3/2,±1/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 2.3634474 9.1767562 9.5173272 9.4537896 16.26820913 23.7774336
21 2.3572976 9.160533 9.4973288 9.4291904 16.23717148 23.7262874
22 2.3506236 9.1422357 9.4754828 9.4024944 16.20263014 23.6704599
23 2.34437 9.1235802 9.4623932 9.37748 16.1727164 23.6347547
24 2.3365105 9.1003132 9.4337608 9.346042 16.12847043 23.5624723
25 2.3278776 9.0737002 9.4063087 9.3115104 16.08093077 23.49207218
26 2.3178138 9.0417724 9.3748002 9.2712552 16.02477251 23.41111425
27 2.3055609 9.001907 9.3366425 9.2222436 15.95539701 23.31300653
28 2.2897672 8.9494135 9.2876237 9.1590688 15.86482032 23.18692053
29 2.267812 8.8751483 9.219645 9.071248 15.73754515 23.01201325
30 2.2338153 8.7585556 9.1145688 8.9352612 15.53877383 22.7415951
31 2.1712338 8.541783 8.9214291 8.6849352 15.17061819 22.24444928
32 2.0088716 7.9755539 8.4205282 8.0354864 14.21126315 20.95506005
33 0.3014292 2.0014559 3.1557185 1.20571664 4.102086834 7.401795785
34 2.8965491 11.086203 11.157154 11.5861964 19.47201478 28.0001456
35 2.5945597 10.030958 10.225848 10.3782388 17.68550718 25.6027177
36 2.5075329 9.7279813 9.957352 10.0301316 17.17187269 24.9115749
37 2.4655108 9.5824297 9.8276345 9.8620432 16.92465552 24.57768843
38 2.4403676 9.4958699 9.749967 9.7614704 16.77730198 24.37779335
39 2.4233949 9.4378299 9.6975005 9.6935796 16.67825139 24.24277103
40 2.4110101 9.3957765 9.6591879 9.6440404 16.60629428 24.14418288
41 2.4014677 9.3636062 9.6296469 9.6058708 16.55110028 24.06817323
42 2.3938148 9.3379889 9.6059392 9.5752592 16.50703201 24.007178
43 2.3874865 9.3169521 9.5863229 9.549946 16.47074937 23.95671303
44 2.3821255 9.299251 9.5696984 9.528502 16.4401441 23.9139469
45 2.3774931 9.2840573 9.5553353 9.5099724 16.41381384 23.87699753
46 2.3734101 9.2707712 9.5427195 9.4936404 16.39074984 23.84452898
47 2.3700108 9.2594901 9.5316593 9.4800432 16.37098742 23.81624423
48 2.3666533 9.2488049 9.5215202 9.4666132 16.35242395 23.79007375
49 2.3637099 9.2393662 9.512395 9.4548396 16.33593664 23.76659865
50 2.3610292 9.2308 9.5040636 9.4441168 16.32094308 23.7451723

Table B.4: Calculated C6 values for 6Li |nP, 3/2,±3/2〉 ⊗ |nP, 3/2,±3/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 72.871573 178.76251 73.384203 291.486292 260.6043312 237.9860298
21 73.194583 179.54211 73.697346 292.778332 261.7382766 239.0136115
22 73.479386 180.22416 73.970151 293.917544 262.7302364 239.9122258
23 73.727866 180.81923 74.208197 294.911464 263.5957111 240.6963093
24 73.94583 181.34125 74.417055 295.78332 264.3549572 241.3842038
25 74.137954 181.80148 74.601255 296.551816 265.0243594 241.9907778
26 74.30818 182.2093 74.764511 297.23272 265.6175449 242.5283298
27 74.459656 182.57226 74.909844 297.838624 266.1454938 243.006805
28 74.594999 182.8966 75.039756 298.379996 266.6172875 243.43445
29 74.716387 183.18756 75.156329 298.865548 267.0405368 243.8181273
30 74.825648 183.44949 75.261305 299.302592 267.4215723 244.1635843
31 74.924316 183.68607 75.356155 299.697264 267.7657449 244.4756648
32 75.013696 183.90043 75.442121 300.054784 268.0776008 244.7584683
33 75.094895 184.09521 75.520263 300.37958 268.3609829 245.0154868
34 75.168861 184.27267 75.591487 300.675444 268.6191804 245.2497068
35 75.2364 184.43475 75.656563 300.9456 268.8550104 245.4636668
36 75.298554 184.58393 75.716465 301.194216 269.0720713 245.6606003
37 75.354959 184.71942 75.770952 301.419836 269.2692478 245.839601
38 75.407145 184.84474 75.821325 301.62858 269.4516141 246.0051263
39 75.455362 184.9605 75.867825 301.821448 269.6200546 246.1579683
40 75.499864 185.06729 75.910762 301.999456 269.7754709 246.2990785
41 75.540819 185.16583 75.950449 302.163276 269.9188911 246.4293293
42 75.578838 185.25724 75.987266 302.315352 270.0519416 246.5501865
43 75.614125 185.34211 76.021459 302.4565 270.1754757 246.6624078
44 75.646922 185.42101 76.053263 302.587688 270.2903272 246.7667638
45 75.677449 185.49446 76.08289 302.709796 270.3972554 246.8639515
46 75.705902 185.56296 76.110527 302.823608 270.4969769 246.9545878
47 75.732457 185.6269 76.136343 302.929828 270.5900697 247.0392288
48 75.757272 185.68667 76.160489 303.029088 270.6770968 247.1183723
49 75.78049 185.74262 76.183101 303.12196 270.7585643 247.1924673
50 75.802237 185.79504 76.204302 303.208948 270.8348991 247.2619165

Table B.5: Calculated C6 values for 6Li |nD, 5/2,±1/2〉 ⊗ |nD, 5/2,±1/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 55.043003 169.46958 119.22624 220.172012 271.4787883 323.302043
21 55.28656 170.20766 119.73105 221.14624 272.6539731 324.6814225
22 55.499762 170.85372 120.17335 221.999048 273.6828849 325.8897995
23 55.685755 171.4174 120.55935 222.74302 274.5806481 326.9442925
24 55.848888 171.91188 120.89808 223.395552 275.368257 327.869568
25 55.992686 172.34786 121.19686 223.970744 276.0627478 328.685621
26 56.120083 172.73419 121.46171 224.480332 276.6781964 329.4089305
27 56.233443 173.07803 121.69753 224.933772 277.2260051 330.0528855
28 56.334723 173.3853 121.90836 225.338892 277.7155958 330.628533
29 56.425558 173.66094 122.09757 225.702232 278.1548301 331.1450905
30 56.507313 173.90909 122.26799 226.029252 278.5502989 331.6102905
31 56.581139 174.13324 122.42201 226.324556 278.9075604 332.0306615
32 56.648011 174.33633 122.56162 226.592044 279.2312853 332.411656
33 56.70876 174.52088 122.68856 226.83504 279.525495 332.75802
34 56.764095 174.68903 122.80428 227.05638 279.79359 333.073725
35 56.81462 174.84261 122.91003 227.25848 280.0384831 333.3621875
36 56.861114 174.98396 123.00739 227.444456 280.2638904 333.6277415
37 56.903302 175.11236 123.09601 227.613208 280.4687361 333.8693245
38 56.942338 175.23112 123.17792 227.769352 280.6581745 334.092658
39 56.978413 175.34081 123.25349 227.913652 280.8331026 334.2987655
40 57.011648 175.44202 123.32343 228.046592 280.9946139 334.4893655
41 57.042305 175.53541 123.38797 228.16922 281.1436456 334.6652375
42 57.070739 175.62205 123.4479 228.282956 281.2819348 334.828514
43 57.097126 175.70248 123.50357 228.388504 281.4103296 334.9801585
44 57.12165 175.77727 123.55537 228.4866 281.5297369 335.1212325
45 57.144475 175.8469 123.60363 228.5779 281.6409231 335.2526425
46 57.165748 175.91182 123.64867 228.662992 281.7446114 335.3752555
47 57.185601 175.97244 123.69075 228.742404 281.8414421 335.4897885
48 57.204152 176.0291 123.73012 228.816608 281.931968 335.596922
49 57.221508 176.08214 123.76699 228.886032 282.0167164 335.6972355
50 57.237764 176.13184 123.80158 228.951056 282.0961498 335.791319

Table B.6: Calculated C6 values for 6Li |nD, 5/2,±3/2〉 ⊗ |nD, 5/2,±3/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0
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n c1/n
∗11 c2/n

∗11 c3/n
∗11 C6(0)/n∗11 C6(π/4)/n∗11 C6(π/2)/n∗11

20 22.484735 145.37462 212.2876 89.93894 288.5794063 500.131835
21 22.588789 145.99518 213.18437 90.355156 289.8079829 502.2536215
22 22.679002 146.53331 213.97464 90.716008 290.8804593 504.121942
23 22.757664 147.00283 214.66438 91.030656 291.8163135 505.752519
24 22.826611 147.41475 215.26975 91.306444 292.6374809 507.1835485
25 22.887348 147.77804 215.80372 91.549392 293.3617245 508.445718
26 22.941121 148.1 216.27711 91.764484 294.0036546 509.5646185
27 22.988935 148.3866 216.69864 91.95574 294.5751438 510.560875
28 23.031622 148.64277 217.07553 92.126488 295.0860074 511.4515645
29 23.069877 148.87263 217.41382 92.279508 295.5444518 512.250972
30 23.104279 149.07961 217.71854 92.417116 295.9573098 512.970994
31 23.13532 149.26662 217.99395 92.54128 296.3303744 513.6217075
32 23.163412 149.4361 218.24363 92.653648 296.6685074 514.2115795
33 23.188908 149.59015 218.47066 92.755632 296.975892 514.747893
34 23.21211 149.73055 218.67765 92.84844 297.2560744 515.2368225
35 23.233274 149.85883 218.86684 92.933096 297.5120998 515.683664
36 23.25274 149.9769 219.04102 93.01096 297.7477713 516.095035
37 23.270342 150.08429 219.19962 93.081368 297.962198 516.469487
38 23.28665 150.18357 219.34618 93.1466 298.160405 516.815555
39 23.30175 150.27523 219.48137 93.207 298.3433419 517.1348325
40 23.315565 150.35976 219.60671 93.26226 298.5123956 517.4306625
41 23.328338 150.43801 219.72216 93.313352 298.6685608 517.703198
42 23.340159 150.51056 219.82944 93.360636 298.8134798 517.956399
43 23.351115 150.57793 219.92912 93.40446 298.94808 518.191635
44 23.361284 150.64059 220.02188 93.445136 299.0732923 518.410514
45 23.370737 150.69895 220.10832 93.482948 299.189933 518.614457
46 23.379535 150.75339 220.18898 93.51814 299.2987488 518.80474
47 23.387734 150.80424 220.26437 93.550936 299.4004116 518.9825665
48 23.395385 150.85179 220.33491 93.58154 299.4954969 519.1489325
49 23.402533 150.89633 220.401 93.610132 299.584567 519.304783
50 23.409217 150.93808 220.46299 93.636868 299.6680761 519.4509445

Table B.7: Calculated C6 values for 6Li |nD, 5/2,±5/2〉 ⊗ |nD, 5/2,±5/2〉 pair-
states. Calculated parameters to calculate C6 values of 6Li pair-states with full
angular dependence according to Eq. 2.19 and some angles θ. The values are in
natural units of Eha0

6.
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Appendix C

Forster Resonances of 6Li.

We calculated the Förster defects δαβ
1 for 6Li |nP 〉 Rydberg states using Pair-

Interaction [87]. Fig. C.1 shows these calculated defects for all relevant channels that

can be used to tune a Förster resonance. The main channel that can be used to tune

such resonances is the |(n± 1)D〉 ⊗ |(n∓ 1)D〉 pair state. This is because it has

strongest dipole matrix element couplings with target states |nP 〉 ⊗ |nP 〉 and also is

least “sharp” which would lead to broader resonances.

1See Eq. 2.14.
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Figure C.1: Förster defects of 6Li |nP 〉⊗|nP 〉 Rydberg states. Relevant channels
that could be used to tune a Förster resonance with a field. The specific |j,m〉
channels can be easily derived from the selection rules.
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Table C.1 shows all the magnetic fields less than 1000 G that would lead to

a Förster resonance for each possible principal quantum number. We can calculate

these values by matching the Förster defect δαβ and the magnetic field dispersion from

Eq. 3.1. With these results, it seems we could be able to tune reasonable resonances

using magnetic fields for states as low as |30P 〉 ⊗ |30P 〉.

nP state B field (G)

23P 708.5
30P 542.0 863.0
31P 191.9 526.6
32P 261.0
33P 4.9 51.6
34P 113.2
35P 242.4
36P 343.0 361.9
37P 420.7
38P 479.9
39P 524.3
40P 556.7

Table C.1: Magnetic fields to tune Förster resonances in |nP, nP 〉 states.
Predicted Förster resonances with magnetic field according to the known magnetic
dispersion of Eq. 3.1 and Förster defects shown in Fig. C.1. These predictions do not
have any information as to the width of these resonances.

C.1 C6 coefficients with Pair-Interaction

To test the predicted Förster resonances, we developed two different methods to

calculate C6 coefficients using Pair-Interaction. The first method involves comparing

the energy of the bare pair-state E|k∗,k∗〉(∞) = 2E|k∗〉 to the calculated energy of

the pair state at a large distance (e.g. 5 alatt is sufficient). By matching the energy

difference between these two and applying it to a simple van der Waals potential

V (R) = −C6/R
6 we extract coefficients that we find agree very well to the full pair

potential at closer distances when accounting for overlap. While this method is very
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good at finding a good C6 coefficient, pair-state calculations are very computationally

expensive. This makes the method too costly to do a full exploratory calculation.

Instead, we decided to calculate the C6 perturbatively as explained in Sec. 2.5.1.

This requires only single-particle calculations and is much faster due to its implemen-

tation in the Pair-Interaction package which very efficiently calculates dipole matrix

elements between Rydberg states. Similarly to the 0 field calculation of Sec. 2.5.1 for

the |j,m〉 basis. We can calculate full angular dependence of the C6 coefficients by

keeping track of |∆ma + ∆mb| = 0, 1, 22. We perform calculations at many different

magnetic and electric fields. We find the exact same results shown in Fig. 2.4 for 0

field. Fig. C.2 shows these calculated C6 coefficients for an angle θ = π/2 for various

principal quantum numbers and fields. We find very good agreement with the pre-

dicted resonances from Table. C.1. It is important to note that in the case of |31P 〉

Rydberg states, we were dressing relatively close to a Förster resonance which could

also have impacted our ability to dress the atoms within the simple Rydberg dressing

scheme.

We should also note that tuning the Förster resonances with electric field is much

more complicated and asymmetric for different |k∗〉 ⊗ |k∗〉 pair-states. This implies

that Rydberg dressing schemes at high magnetic fields can be much more straight-

forward to implement and tune. Furthermore, it is important to mention that im-

plementing the same calculations for different species is very easy within the Pair-

Interaction package.

2Even though m is not a “good” quantum number at high magnetic fields. The symmetry
considerations that allowed for these separations carry forward.
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Figure C.2: 6Li C6(π/2) coefficients vs. electromagnetic fields and principal
quantum number. Plots for the C6 coefficients of |k∗〉⊗|k∗〉 pair-states as a function
of magnetic (left column E = 0 V/cm) and electric (right column B = 600 G) fields
and for |28P 〉, |31P 〉, and |41P 〉 Rydberg states. This are for dipoles parallel to
eachother aligned perpendicularly to theis distance vector (θ = π/2). The colors
correspond to the different possible pair-states as numbered in Fig. 3.1b and shown
in Fig. 3.2. Note how the Förster resonances with magnetic field agree with the
predicted values from Table. C.1.

170



Appendix D

Measured |2S〉 → |nP 〉 Rydberg

Lines of 6Li.

For the purpose of this thesis, we found a lot of the Rydberg lines of Lithium-6 for the

purpose of using these states for experiments. The methods used to find these lines

are explained in Sec. 3.5. Developing these techniques was necessary as these lines

were not exactly known before, The NIST Atomic Spectra Database in Ref. [105] only

lists approximate wavelengths up to the transition to |32P 〉. However, it is simple

to calculate the expected wavelength transitions in terms of the ionization energy

(ELi
ion = 5.391 714 996(22) eV [105]) and the binding energy with quantum defects of

Eq. 2.1. We can calculate the energy difference between these convert to wavelength

(λ = hc/∆E) and multiply by 4 to extract the pre-quadrupoled wavelength of our

laser system λexp.

We reference the wavelength to the modes of the ULE cavity (Sec. 3.4.2) us-

ing a wavemeter (Burleigh WA-20VIS) and find the necessary sideband frequency

∆ν to drive the EOM and lock the laser from that line. We can extract λmeas =

λmode − λ2
mode∆ν/c, although these value does not have much real meaning since the

wavemeter we use is not that precise. However, the fact that measured and expected
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n λexp (nm) Closest mode (nm) Sideband (MHz) λmeas (nm) λUV (nm)

23 924.2510 924.2510 211 924.25040 231.06260
25 923.5671 923.5660 -651 923.56785 230.89196
26 923.2832 923.2870 349 923.28601 230.82150
28 923.8044 922.8040 -379 922.80508 230.70127
30 922.4186 922.4220 728 922.41994 230.60498
31 922.2533 922.2560 605 922.25428 230.56357
32 922.1033 922.1020 -425 922.10320 230.52580
33 921.9667 921.9670 -217 921.96761 230.49190
34 921.8421 921.8440 350 921.84301 230.46075
35 921.7281 921.7290 160 921.72855 230.43214
36 921.6235 921.6240 -345 921.62498 230.40624
37 921.5272 951.5300 680 951.52795 237.88199
38 921.4385 921.4410 555 921.43943 230.35986
39 921.3566 921.3550 -452 921.35628 230.33907
40 921.2807 921.2790 -611 921.28073 230.32018
44 921.0274 921.0300 603.5 921.02829 230.25707

Table D.1: Measured wavelengths of 6Li |2S〉 → |nP 〉 transitions. Summary of
measured values for various Rydberg transitions. The method of finding these lines
is described in Sec. 3.5.

values are so close means that we can trust the calculated values to find any state as

long as we have access to a “ruler” such as the ULE cavity. Table. D.1 shows these

calculations along with λUV = λmeas/4.

Using the “V-scheme” spectroscopy method we found lines up to |40P 〉, at which

point the spectroscopy signal as shown in Fig. 3.9c was too small to observe due

to the inverse scaling of dipole matrix element with principal quantum number (Ta-

ble. 2.1). As a proof of principle, we found the |44P 〉 Rydberg line using only “MOT

spectroscopy” where we look at depletion of our magneto-optical trap as explained in

Sec. 3.5. It is important to mention that the values listed in Table. D.1 were taken

over the course of 4 years and we never observed a drift in their values larger than

∼ 1 MHz in sideband frequency, even when referencing to the same Rydberg line years

apart.
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